
Measuring Inner Source Collaboration
Vermessung von Inner-Source-Zusammenarbeit

Der technischen Fakultät
der Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur

Erlangung des Doktorgrades
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Maximilian Capraro

Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 19. Mai 2020
Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Andreas P. Fröba
Gutachter: Prof. Dr. Dirk Riehle

Prof. Dr. Brian Fitzgerald

Copyright © 2020 – Maximilian Capraro. All rights reserved.

Abstract
Inner source (IS) is the use of open source software development practices and the establish-
ment of open source-like communities within an organization. The organization may still de-
velop proprietary software but internally opens up its development. IS promises to resolve
problems of traditional software development by easing software reuse and enabling parties
within an organization to collaborate across organizational boundaries.

However, it is unclear what elements constitute IS (problem I) and how to measure the pres-
ence andmagnitude of IS collaboration (problem II). The large majority of research articles on
IS to date are limited to qualitative results regarding IS. There are yet no quantitative studies
on IS collaboration exploring howmuch IS collaboration takes place or how IS practices affect
it (problem III).

We followed a three-phase research approach to address these problems. First, we performed an
extensive literature survey and analyzed 43 IS publications. We found that four key elements
constitute IS (shared cultural values, open development environment, communities around
software, IS-specific scenarios) but that IS programs and projects differ on at least five dimen-
sions (addressing problem I).

Second, we developed the patch-flowmethod (and a software tool implementing it) formeasur-
ing IS collaboration. Patch-flow is the flow of code contributions across organizational bound-
aries (“silos”) such as organizational unit or cost center boundaries. We evaluated the method
using case study research with a non-trivial industry organization and found it to be viable and
useful to practitioners (addressing problem II).

Third, we performed amultiple-case case studywith three large software organizations running
a total of five IS program. We identified the used IS practices and the resulting patch-flow. We
found patch-flow to exist in all organizations but that only fraction of all code contributions
to IS projects constitute patch-flow. We observed that the number of IS practices implemented
correlates with the distance of parties involved in collaboration. This indicates that IS is par-
ticularly suited to enable collaboration between parties of high distance in an organization (ad-
dressing problem III).

This thesis delivers a holistic definition of IS and the first classification framework for IS pro-
grams and projects. Researchers can use such a framework to reason about generalizability of
their results more precisely. The patch-flow measurement method is the first of its kind to
measure and quantify IS collaboration and can serve as a base for further quantitative analyses
of IS collaboration. The exploration of the patch-flow in the three industry cases can serve as
example and benchmark for practitioners.

v

Zusammenfassung
Inner Source (IS) ist die Verwendung von Softwareentwicklungspraktiken aus dem Open-
Source-UmfeldunddieEtablierungvonopen-source-artigenCommunities innerhalbderGren-
zen einer Organisation. Die Organisation kann dabei weiterhin proprietäre Software entwick-
eln und öffnet die Softwareentwicklung lediglich für interne Teilnehmer. IS löst Probleme der
traditionellen Softwareentwicklung, in dem es Wiederverwendung vereinfacht und Parteien
innerhalb einer Organisation erlaubt, über organisationsinterne Grenzen hinweg, zusammen-
zuarbeiten.

Allerdings ist unklar, welche Elemente IS definieren (Problem I) und wie man das Vorhan-
densein und Ausmaß von IS-Zusammenarbeit messen kann (Problem II). Die Mehrheit an
existierenden Forschungsartikeln zu IS präsentiert lediglich qualitative Ergebnisse. Es gibt bis
jetzt keine quantitativen Studien, die explorieren wie viel IS-Zusammenarbeit vorkommt oder
wie IS-Praktiken sie beeinflussen (Problem III).

Wir adressierendieseProblememit einemForschungsansatz indrei Phasen: Imder erstenPhase
führen wir ein umfangreiches Literatur-Survey durch und analysieren 43 Publikationen zu IS.
Wir stellen vier Schlüsselelemente vor, die IS ausmachen (gemeinsame kulturelleWerte, eine of-
fene Entwicklungsumgebung, Communities um Software, IS-spezfische Szenarios) und zeigen,
dass IS-Programmeund -Projekte sich inmindestens fünfDimensionenunterscheiden können
(adressiert Problem I).

Im zweiten Schritt entwickelen wir die Patch-Flow Methode (und ein Softwarewerkzeug, dass
sie implementiert) um die Vermessung von IS-Zusammenarbeit zu ermöglichen. Patch-Flow
ist der Fluss von Codebeiträgen über organisationsinterneGrenzen (“Silos”) wie beispielsweise
OrganisationseinheitenoderKostenstellenhinweg. Wir evaluierendieMethodemittels Fallstu-
dienforschung in einer nicht-trivialen Organisation und zeigen, dass dieMethode in der Praxis
umsetzbar und für Praktiker von Nutzen ist (adressiert Problem II).

Im dritten Schritt führen wir eine Fallstudie mit drei großen Softwareorganisationen durch,
die insgesamt fünf IS-Programme betreiben. Wir identifizieren verwendete IS-Praktiken und
vermessen den Patch-Flow. Patch-flow existiert in allen untersuchten Organisationen, jedoch
ist nur ein Bruchteil aller Codebeiträge Patch-Flow. Wir beobachteten, dass die Anzahl der IS-
Praktiken mit der Distanz der zusammenarbeitenden Parteien korreliert. Das deutet darauf
hin, dass IS besonders geeignet ist, um Zusammenarbeit zwischen Parteien in hoher Distanz
zu ermöglichen (adressiert Problem III).

Diese Thesis präsentiert eine umfassende Definition von IS sowie das erste Klassifikationsrah-
menwerk für IS-Programme und -Projekte. Forscher können das Rahmenwerk nutzen um die
Generalisierbarkeit ihrer Ergebnisse präziser zu diskutieren. Die Patch-FlowMethode ist die er-
ste Methode zur Vermessung und Quantifizierung der IS-Zusammenarbeit. Sie kann als Basis
für weitere quantitative Analysen der IS-Zusammenarbeit dienen. Die Exploration des Patch-
Flow in drei Organisationen dient als Beispiel und Benchmark für Praktiker.

vii

Contents

1 Introduction 1
1.1 Motivation, Research Questions, Contributions 2

1.1.1 Inner Source Taxonomy . 3
1.1.2 Method for Measuring Inner Source Collaboration 4
1.1.3 Influence of Inner Source Practices on Collaboration 5

1.2 Inner Source Definitions . 6
1.3 Thesis Structure . 7

2 Inner Source Taxonomy 9
2.1 Related Work . 10

2.1.1 Elements of Inner Source . 10
2.1.2 Classification Framework . 11

2.2 Research Approach . 11
2.2.1 Literature Selection . 11
2.2.2 Resulting Literature . 13
2.2.3 Literature Analysis . 16

2.3 Key Elements of Inner Source . 17
2.3.1 Open Environment . 19
2.3.2 Shared Cultural Values . 21
2.3.3 Communities around Software . 22
2.3.4 Inner Source Scenarios . 23

2.4 Classification Framework for Inner Source 25
2.4.1 Classification of Inner Source Programs 25
2.4.2 Classification of Inner Source Projects 29

2.5 Application of the Classification Framework 32
2.5.1 Application to Inner Source Programs 32
2.5.2 Application to Inner Source Projects 37

2.6 Conclusion . 38

3 Patch-Flow Measurement Method 39
3.1 Related Work . 40

3.1.1 Measuring Inner Source Collaboration 40
3.1.2 Measuring Software Development Collaboration 41

3.2 Patch-Flow Measurement Method . 43
3.2.1 Contribution-Flow Phenomenon 43
3.2.2 Patch-Flow Phenomenon . 43
3.2.3 Data Structures . 45
3.2.4 Measurement Process . 47
3.2.5 Relationship to Classification . 48

3.3 Evaluation Approach . 50

ix

3.3.1 Case Selection . 50
3.3.2 Data Gathering . 51

3.4 Evaluation Results . 53
3.4.1 Organizational Structure . 53
3.4.2 Patch-Flow Overview . 55
3.4.3 Patch-Flow Over Time . 57
3.4.4 Patch-Flow into IS Projects . 58

3.5 Discussion . 61
3.5.1 Evaluation . 61
3.5.2 Operational Inner Source Definition 63

3.6 Trustworthiness . 63
3.6.1 Credibility . 64
3.6.2 Dependability . 64
3.6.3 Confirmability . 64
3.6.4 Transferability . 64

3.7 Conclusion . 65

4 Patch-Flow Crawler: A Tool for Measuring Patch-Flow 67
4.1 Requirements . 68

4.1.1 Overview . 69
4.1.2 Identify and Persist Inner Source Projects 71
4.1.3 Extract Code Contribution Meta Data 71
4.1.4 For Persisted Code Contributions, Identify Receiving Projects 72
4.1.5 Identify and Persist Authors, Committers of Code Contributions . . 72
4.1.6 Identify and Persist Org. Units of Authors, Committers 72
4.1.7 Enable Incremental Crawling . 73

4.2 Software Architecture . 73
4.2.1 Static View . 74
4.2.2 Dynamic View . 77
4.2.3 Deployment View . 78

4.3 Design & Implementation . 79
4.3.1 Domain Model . 79
4.3.2 Crawl Engine . 82
4.3.3 Plugin Interface . 83

4.4 Evaluation . 87
4.4.1 GitHub Enterprise-Specific Requirements 87
4.4.2 Gitlab-Specific Requirements . 87
4.4.3 TFS-Specific Requirements . 89
4.4.4 Remaining Requirements . 89

4.5 Conclusion . 89

5 Case Study: Patch-Flow at Three Large Organizations 91
5.1 Related Work . 93

5.1.1 Prior Case Studies . 93
5.1.2 Magnitude of IS Collaboration . 93
5.1.3 Influence of IS Practices . 94

x

5.2 Research Approach . 94
5.2.1 Selecting Cases . 95
5.2.2 Identifying IS Practices (Qualitative) 97
5.2.3 Measuring Patch-Flow (Quantitative) 100

5.3 Results: Case Descriptions . 103
5.3.1 Automotive Org. - AutoSource . 103
5.3.2 Automotive Org. - Forge Components 109
5.3.3 Industry Org. - Test Infrastructure 110
5.3.4 Medical Org. - Imaging Platform 114
5.3.5 Medical Org. - Development tools 119

5.4 Results: Cross Synthesis . 121
5.4.1 Inner Source Practices . 121
5.4.2 Patch-Flow . 125
5.4.3 Correlations . 129

5.5 Interpretation . 129
5.5.1 Magnitude of Inner Source Collaboration 129
5.5.2 Effect of Inner Source Practices on Collaboration 130

5.6 Trustworthiness . 133
5.6.1 Credibility . 133
5.6.2 Transferability . 135
5.6.3 Dependability . 135
5.6.4 Confirmability . 135

5.7 Conclusion . 136

6 Closing 137
6.1 Results and Consequences . 137

6.1.1 RQ1: What are the elements of IS software development? 137
6.1.2 RQ2: How do different IS implementations differ from one another? 138
6.1.3 RQ3: How tomeasure IS collaborationwithin a software developing

organization? . 138
6.1.4 RQ4: What is the magnitude of IS collaboration in organizations? . 139
6.1.5 RQ5: How do IS practices affect IS collaboration? 139

6.2 Future Research . 140
6.2.1 Extend the IS Taxonomy . 140
6.2.2 Build upon Patch-Flow Method 141
6.2.3 Explore Non-Code Contribution-Flow and Open Communication . 142
6.2.4 Systematically Transfer Open Source Insights 143
6.2.5 Investigate Program Governance 143

6.3 Outlook . 144

References 145

Appendix A Claimed Benefits of Inner Source Adoption 161
A.1 More Efficient and Effective Development 162

A.1.1 Faster time-to-market . 162
A.1.2 Reduced development cost . 163

A.2 Overcoming of Organizational Unit Boundaries 163

xi

A.2.1 Cost and risk sharing among org. units 163
A.2.2 Collaboration across org. unit boundaries 164
A.2.3 Program-Wide information exchange 164

A.3 More Successful Reuse . 164
A.3.1 Use of competence missing at component providers 165
A.3.2 Independence between reusers and providers 165
A.3.3 Relief of component providers . 165

A.4 Better Software Product . 166
A.4.1 Increased code quality . 166
A.4.2 More innovative development . 166

A.5 More Flexible Utilization of Developers . 167
A.5.1 Simplified developer deployment 167
A.5.2 Collaboration of detached developers 167

A.6 Enhanced Knowledge Management . 168
A.6.1 Community-Based learning . 168
A.6.2 Openness and availability of knowledge 168

A.7 Higher Employee Motivation . 169

Appendix B Additional Materials regarding the Patch-Flow Crawler 171
B.1 Source Code Listings . 171

B.1.1 ScmAdapter Interface . 171
B.1.2 PreStep and PostStep Interface . 172
B.1.3 PreStep and PostStep Interface . 173

B.2 Mapping of Concepts . 173

Appendix C Research Protocol for Multiple-Case Case Study 175
C.1 Case Study Overview & Design . 176

C.1.1 Research Objective . 176
C.1.2 Case Study Research and Alternatives 176
C.1.3 Case Study Design . 178

C.2 Data Collection Procedures & Questions 180
C.2.1 Qualitative Data . 180
C.2.2 Quantitative data . 183

C.3 Guide for Case Study Report . 183
C.4 Artifacts . 185

C.4.1 Code Book . 185
C.4.2 Translated Quotes . 190

xii

Listing of Figures

2.1 Inner source related publications over time 13
2.2 Inner source related publications by organization 13
2.3 Theoretical model of inner source elements 18
2.4 Classification framework of inner source programs 26
2.5 Classification framework of inner source projects 26

3.1 Example patch-flow between four organizational units 44
3.2 Simplified patch-flow flow data model as UML2 class diagram 45
3.3 Patch-flow graphs with different granularity 47
3.4 Organizational structure including all organizational units articipating in in-

ner source collaboration . 54
3.5 Patch-flow graph showing patch-flow between the level 4 organizational units 55
3.6 Patch-flow relative to all code contributions over time by highest level crossed 57
3.7 Absolute number of code contributions received by inner source project . . . 59
3.8 Ratio of patches to all code contributions by inner source project 59

4.1 Hierarchy of requirements towards the patch-flow crawler 70
4.2 Logical components of the patch-flow crawler as UML 2.0 component diagram 75
4.3 Deployment of the patch-flow crawler as command line tool as UML 2.0 de-

ployment diagram . 78
4.4 Code contributions and associated classes as UML 2.0 class diagram 80
4.5 Typed relationship pattern as UML 2.0 class diagram 81
4.6 Abbreviated notation for typed relationship pattern as UML 2.0 class diagram 81
4.7 Organizational units and associated classes as UML 2.0 class diagram 82
4.8 Crawl engine and associated classes as UML 2.0 class diagram 83
4.9 Object communication during a crawl run asUML 2.0 communication diagram 86

5.1 Patch-flow in automotive org.’s AutoSource program 108
5.2 Patch-flow in automotive org.’s forge components program 111
5.3 Patch-flow in industry org.’s test infrastructure program 115
5.4 Patch-flow in medical org.’s imaging platform program 118
5.5 Patch-flow in medical org.’s development tools program 120

xiii

Listing of Tables

2.1 Overview of organizations using inner source 14
2.2 Classification of inner source programs . 33
2.3 Classification of inner source projects . 36

3.1 Gathered qualitative data . 52

4.1 Overview of requirement evaluation status 88

5.1 Overview of case organizations . 96
5.2 Considered qualitative data items . 98
5.3 Number of excluded code contributions by reason 102
5.4 Normalized organizational levels . 103
5.5 Classification of studied inner source programs 104
5.6 Patch-flow metrics for automotive org.’s AutoSource program 108
5.7 Patch-flow metrics for automotive org.’s forge components program 111
5.8 Patch-flow metrics for industry org.’s test infrastructure program 115
5.9 Patch-flow metrics for medical org.’s imaging platform program 118
5.10 Patch-flow metrics for medical org.’s development tools program 120
5.11 Summary of observed practices . 122
5.12 Practices by inner source program . 126
5.13 Overview of patch-flow metrics per inner source program 127

xv

Listing of Acronyms

API application programming interface

CLI command line interface

CSV comma separated value

IS inner source

LCA lowest common ancestor

LDAP lightweight directory access protocol

org. level organizational level

org. unit organizational unit

OS open source

PMC project management committee

REST representational state transfer

SCM source code management

SIP session initiation protocol

SNA social network analysis

SPL software product line

TFS Team Foundation Server

xvii

Acknowledgments

A large number of human beings supported this thesis project with their time, expertise, and

encouragement. I am very grateful to every single one of them.

First and foremost, Iwish to expressmydeep gratitude tomy thesis advisor Prof.DirkRiehle

who introduced me to inner source, provided continuous guidance, taught me about the soft-

ware industry and its people, allowed me to pursue this research, and by doing so made this

thesis project possible.

I am grateful to Prof. Brian Fitzgerald for being external examiner of this thesis and serving

in my promotion committee.

During the last years, I had the pleasure to work in a group comprised of the most extraor-

dinary people: Dr. Ann Barcomb, Andreas Bauer, Andreas Kaufmann, Daniel Knogl, Fariba

Bensing,Georg Schwarz,HannesDohrn, JuliaKrause,MichaelDorner,Dr.-Ing.NikolayHaru-

tyunyan, and Sebastian Schmid. I am grateful to every single one them for their enormous sup-

port and encouragement. Over the years, they each reviewed iterations of the papers that built

the foundation for this thesis or even chapters of this thesis itself. They helped to significantly

improve my work.

Michael was my office mate and a trusted confidant during the course of my thesis project.

Practically daily, we discussed our research, reflected on observations, and hatched ideas. While

writing this thesis, his LaTeX help was invaluable. I cannot thank him enough.

I am grateful to Ann and Andreas K. who on countless occasions offered feedback, help,

and entertaining sarcasm. I wish to thank Nikolay for repeatedly sharing with me experiences

from the finalmonths of his thesis project. This allowedme to navigate the various processes at

our university smoothly and focus on the actual research and contentwork. I thankAndreas B.,

Andreas K., Hannes, andGeorg for themany discussions on software development that helped

to improve my measurement software significantly and broadened my horizon.

During the course of this thesis project, researchers outside of our research group or ad-

junct to it offered help. I am very grateful for the advise and the always constructive feedback,

Dr. Klaas-Jan Stol and Prof. Minghui Zhou have offered on multiple occasions during the last

xix

years. I am very thankful to Dr.-Ing. Martin Jung for his feedback that helped to improve the

more technical parts of this thesis.

Researchon software engineeringdoes notworkwellwithout an industry perspective. Iwish

to thank all of the participants of our case studies as well as the many individuals from other

organizations in industry who offered feedback, insights, and inspiration. I am particularly

grateful for the countless conversations with Andreas Hadert, Jochen Michel, Martin Stern,

Ralph Luber, Siegfried Wach, Dr. Stefan Voget, Thomas Hildebrand, Tobias Winderl, and

Zsuzsanna Gnandt that benefited our research and this thesis greatly.

Over the last years an industry community formed about understanding, learning, and teach-

ing inner source principles – the InnerSource Commons. I would like thank all of its members,

particularly Cedric Williams, Dr. Daniel Izquierdo Cortázar, Georg Grütter, Johannes Tigges,

Dr. TimYao andRussel Rutledge, for the countless discussions and the vivid exchange of ideas;

and Danese Cooper for launching this community.

I am deeply grateful to Julia Werner for her feedback on data visualization and writing, her

support and inspiration during the course of this thesis project. Last, but absolutely not least,

I wish to thank my parents Annegret and Franz, my family, and my friends for their endless

support.

I acknowledge Jordan Suchow for providing the template that was used to typeset this thesis

(https://github.com/suchow/dissertate) and Nikolay Harutyunyan and Andreas Kaufmann for

modifying this template according to the requirements of our university. This work was par-

tially funded byDFG grant 382466185, three industry grants by undisclosed organizations, and

an industry grant by Black Duck Software Inc. to the Professorship of Open Source Software

at Friedrich-Alexander-Universität Erlangen-Nürnberg.

xx

Related Publications

Throughout this thesis, the third person plural (“we”) is used. That is common courtesy given

the support that was acknowledged in the previous section. However, in this section, the first

person singular (“I”) is used to allow for a clear distinction between the contributions of the

author of this thesis and others.

My colleagues and I published or intend to publish partial results of this thesis. The follow-

ing articles are related to this thesis:

Capraro and Riehle 2017 Inner source definition, benefits, and challenges. For chapter 2

of this thesis, I reused the article’s components regarding the IS

taxonomy. For this thesis, I extended themwith amore detailed

discussion of the approach and performed changes to the text

enhancing its readability. Appendix A is copied verbatim from

the article with minor changes.

Capraro et al. 2018 Patch-flow method for measuring inner source collaboration.

Chapter 3 is copied verbatim from this article. For this the-

sis, I extended the text with a clearer distinction between

contribution-flow and patch-flow phenomena, added a discus-

sion on how patch-flow can be measured for different classes of

IS programs and projects, and performed minor changes.

not yet published How inner source practices affect inner source collaboration. Chap-

ter 5 is based on the findings of this study and the current draft

of a manuscript reporting about them.

For all three articles, I was the leading author and the main contributor to the research design,

execution, and writing.

For Capraro and Riehle (2017), Dirk Riehle contributed by supporting the literature selec-

tion and providing significant feedback on the research design and revisions of the article. For

xxi

Capraro et al. (2018), Michael Dorner and Dirk Riehle contributed by providing significant

feedback on the revisions of the manuscript. Michael Dorner contributed to the data collec-

tion and interpretation. For the current version of the not yet published manuscript, Michael

Dorner and Dirk Riehle contributed by providing significant feedback on the research design

and revisions of the manuscript. Michael Dorner contributed to the data collection in two of

the three cases.

xxii

1
Introduction

Open source (OS) software - that is software provided to the world under an open source li-

cense, free for everyone to use andmodify - has become a key pillar of today’s software industry.

OS software tools are used as part of software development processes (Fitzgerald 2006), OS

components are integrated into proprietary software products, and often OS infrastructure

components deliver and run these products (Franch Gutiérrez et al. 2013). Organizations in-

vest significant effort in governing their use and contributions toOS (Harutyunyan andRiehle

2019; Harutyunyan 2019) or use it as part of their business strategy (Riehle 2007, 2009, 2012).

OS is recognized to be capable of delivering high quality software (Crowston et al. 2012).

The software industry has shown a significant interest in using not only fromOS’ outcomes

(the software components and tools) but also adopting software development (software devel-

opment) practices that are typically exercised in the OS context (Stol et al. 2014). The use of

OS software development practices and the establishment of OS-like culture within organiza-

tions is called inner source (IS). Practitioners expect a variety of benefits from IS adoption (see

appendix A). In addition to the interest of the software industry, the research community has

shown interest in IS as a research topic indicated by a steady stream of scientific publications

(Capraro and Riehle 2017).

1

While, IS software development is similar to and shares attributes with OS software devel-

opment, IS opens up the development only internally within the environment of one organi-

zation (Dinkelacker et al. 2002). Organizations can continue to develop proprietary software

and do not need to provide it to the world under an OS license. However, they establish OS-

like communities consisting only of individuals employed by the organization. IS is believed to

significantly increase the software development efficiency and lead to higher quality software

components. It leads to “participatory reuse” (Vitharana et al. 2010)where (firm-internal) users

of a software component become contributors to it.

The next sections will motivate and introduce the research questions answered in this thesis

(section 1.1) and give basic IS definitions and a brief introduction of IS’s mechanics (section 1.2).

1.1 Motivation, Research Questions, Contributions

Despite the interest of both research and practitioner communities and first publications dat-

ing back nearly 20 years at time of this writing (O’Reilly 2000; Dinkelacker and Garg 2001;

Dinkelacker et al. 2002), we consider IS to still be an emerging phenomenon. Certain base re-

search has not yet been performed, leaving researchers with a weak foundation for their work

(and practitioners with a weak foundation for IS adoption):

1. There is no established taxonomy defining IS thoroughly.

2. There is no established operational definition or method to measure IS.

3. Prior work consists of primarily qualitative studies. It is unclear howmuch IS collabora-

tion takes place and how different IS practices affect it.

This thesis reports on three studies resolving these problems. First, we present a literature sur-

vey resulting in a model of key elements of IS and a classification framework for IS programs

and projects giving a thorough definition of IS. Second, we describe the patch-flow measure-

ment method for measuring IS collaboration, report on a single-case case study evaluating its

viability and utility, and present a software tool for measuring patch-flow. Third, we present

multiple-case case study research applying the patch-flowmeasurementmethod in three organi-

zations to deliver the first quantitative study on IS describing themagnitude of IS collaboration.

As part of this study, we build a theory on how IS practices affect IS collaboration.

2

The following subsections detail the motivation, research questions, and contributions of

each of these studys.

1.1.1 Inner Source Taxonomy

A steady stream of of scientific literature and practitioner reports indicates the interest in IS.

However, the area lacks a systematic arrangement of prior research work: No consistent taxon-

omy has been presented yet. It is not clear which general elements constitute IS. Differences

between IS programs were studied only in the context of a few selected organizations. The

absence of models and theories that have validity for more than a few organizations leaves re-

searchers with a weak foundation for further research. It creates uncertainty and the risk that

the term IS is used with ambiguous meanings or varying understandings.

To this end, this thesis answers the following research questions:

• RQ1: What are the elements of IS software development?

• RQ2: How do different IS implementations differ from one another?

We answer the research questions by assessing the state of the research: We performed a litera-

ture survey considering a total 43 scientific publications plus additional material. We analyzed

the materials using the inductive theory generation method (Thomas 2006).

To this end, this thesis contributes the following:

• A taxonomy of IS, including ...

– a theoretical model of elements constituting IS

– a classification framework for IS programs and projects as well as its application to

known instances

We found that four key elements constitute IS (an open development environment, shared

cultural values, communities around software, and IS collaboration scenarios). However, IS

programs can differ on at least three dimensions (prevalence of IS, market mechanisms, degree

of self-organization) and IS projects on at least two dimensions (governance, project objective).

Ourmodel and frameworkprovides amore solid foundation for further research. Researchers

can use our model of IS elements as a lens to discuss the IS programs they study and the classi-

fication framework to reason about the generalizability of IS their findings.

3

1.1.2 Method forMeasuring Inner Source Collaboration

There is yet nomethod tomeasure IS collaboration within an organization.Such amethod can

benefit both researchers and practitioners. Researchers can use it as a base measurement and

foundation for sophisticated quantitative models such as evaluation models for IS programs

or metrics for IS project performance. Practitioners can use it to derive an overview of the

participants in and the state of their IS program as well as define key performance indicators

based on the methods output.

To this end, this thesis answers the following research question:

• RQ3: How to measure IS collaboration within a software developing organization?

We answer the research question by formalizing the patch-flow method and evaluating its rel-

evance, viability, and usefulness using case study research (Yin 2013). Patch-flow is the flow of

code contributions across organizational boundaries such as project or cost center boundaries.

The word patch is historically derived from the “patch files” that some OS projects use in their

contribution workflow. Today, patches can have different forms (for example a pull request on

a software forge like GitHub). Whenmeasuring patch-flow, it is not sufficient to simply count

patches over time. One must address the organizational structure contextual to the patch.

To this end, this thesis contributes the following:

• A definition of the patch-flow phenomenon

• The patch-flow measurement method for measuring IS collaboration

• An evaluation of the patch-flow measurement method using case study research with a

software developing multi-industry company

• An introduction and discussion of the patch-flow crawler – a tool for measuring patch-

flow

Our case study demonstrated the viability of the patch-flowmeasurementmodel. We found

the method viable to measure the patch-flow data and that the patch-flow data and visualiza-

tions are capable and useful to express IS collaboration in the studied organization. We ob-

served significant patch-flow, indicating high relevance of the patch-flow phenomenon and

thus our method research.

4

We believe our method to be of interest to both researchers and practitioners seeking to un-

derstand IS collaboration within an organization.

1.1.3 Influence of Inner Source Practices on Collaboration

In absence of a method to measure IS collaboration, the majority of scientific literature pre-

sented qualitative results such as case study reports (for example Dinkelacker et al. 2002; Gur-

bani et al. 2006; Stol et al. 2014; Riehle et al. 2016) and taxonomies or qualitativemodels regard-

ing IS (for example Stol et al. 2011, 2014;Gaughan et al. 2007). There is no study yet quantifying

the magnitude or structure of IS collaboration or exploring the relationship between exercised

IS practices and resulting IS collaboration.

Learning about the magnitude of IS collaboration is relevant for IS practitioners and re-

searchers because it tells how much IS collaboration is to be expected in organizations. The

magnitude indicates the relevance of research on IS proxied by IS’s possible impact on industry

organizations. Understanding how implemented IS practices affect IS collaboration is of inter-

est to to primarily practitioners. It indicates whether the cost of adopting specific IS practices

is justified because it leads to a different magnitude or properties of IS collaboration.

To this end, this thesis answers the following research questions:

• RQ4: What is the magnitude of IS collaboration in organizations?

• RQ5: How do IS practices affect IS collaboration?

Toanswer these researchquestions,weperformedamultiple-case case study in three software

developing organizations running five IS programs. We collected and analyzed qualitative data

to identify the IS practices exercised and the patch-flow (as a proxy for IS collaboration) in the

context of each IS program. We identified correlations between the observed IS practices and

patch-flow and theorized about relationships between them.

To this end, this thesis delivers the following:

• A multiple-case case study with three software developing organizations, including ...

– a discussion of how IS is implemented in five IS programs in the three case organi-

zations

– an in-depth analysis of the case organizations’ patch-flow

5

• A theory (consisting of four hypotheses) on how IS practices affect IS collaboration

Patch-flow and thus IS collaboration occurred in all IS programs. Its magnitude and struc-

ture differed significantly. We theorize that a higher number of IS practices alone does not

necessarily result in more IS collaboration, but that significant IS collaboration can occur with

crude and rudimentary IS practices if there is a strong need to collaborate on a specific com-

ponent. We found a correlation between IS practices and the distance of organizational units

(org. units) collaborating. We theorize that IS practices enable collaboration among org. units

in high organizational distance (between whom no collaboration would take place otherwise).

1.2 Inner Source Definitions

The term IS was coined by O’Reilly (2000). We define IS as follows:

Inner source (IS) is the use ofOS software development practices and the estab-

lishment of an OS-like culture within organizations.

In IS, selected software components are made available as IS projects. We define the term as

follows:

An IS project is a software project with the goal to develop and maintain IS

software.

IS projects are like OS projects in that they do not have a defined end date. Like in OS, the

name of the project is often also used to address the IS component. The software developed by

IS projects is IS software. Stol et al. (2011) define the term as follows:

IS software is the “software product [or component] that is developed within

an IS context”.

Developers within the organization can read the source code of an IS project and use it as part

of their work. In addition to reading the source code, developers can contribute patches to

the IS project. A patch is a code contribution made by a developer who is external to an IS

project. A developer is considered external to a project if not amember of the org. unit owning

the IS project. Typically, patches need approval by the committers of an IS project who decide

whether to reject a patch or enact it by integrating it into the code base (Gurbani et al. 2006;

Riehle et al. 2009). We define the term as follows:

6

A committer is an individual with write (“commit”) privileges to a project’s

code base.

An IS project typically has one or many committers.

Participants in IS projects communicate openly: Every individual within the company can

read and participate in discussions (Neus and Scherf 2005). Open communication should not

only be public within the organization but also archived, written, and complete (Riehle 2015).

A common tool for exercising open communication is a mailing list (van der Linden 2013) or

the features for discussing issues in software forges like GitHub and Gitlab.

To support IS adoption, organizations can establish an IS program. We define the term as

follows:

An IS program is a coordinated effort of an organization to run and maintain

one or multiple IS projects.

Dinkelacker et al. (2002) first used the termwhile discussingHP’s corporate source and collabo-

rative development programs. The collection of all IS software components that are developed

within the projects of an IS program for its IS portfolio. We define the term as follows:

An IS portfolio is the set of all IS software components that are developed and

maintained as part of an IS program.

The project-specific and program-wide perspective differ significantly from each other. The

viewon an IS program as awhole focuses on an organization’s complete IS landscape. Aproject-

specific view is focused on the surroundings of one specific project, the involved parties, and

their interest. Distinguishing between these perspectives but also considering both is crucial

for understanding an organization’s IS efforts.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.

• Chapter 2 (IS taxonomy) reports on a literature survey study resulting in a taxonomy

of IS. It extends the definitions given as part of the introduction by presenting a model

of key elements that constitute IS and a classification framework for IS programs and

projects.

7

• Chapter 3 (patch-flowmeasurementmethod) introduces thepatch-flowmeasurement

method formeasuring IS collaboration and reports on our single-case case study research

to evaluate themethod’s relevance, viability, andusefulness topractitioners and researchers.

• Chapter 4 (patch-flow crawler) introduces and discusses the patch-flow crawler - a soft-

ware tool we developed automate the process of patch-flow measurement. We discuss

requirements towards the patch-flow crawler as well as its design and implementation.

• Chapter 5 (multiple-case case study on IS collaboration) reports on a multiple-case

case study with three large software organizations (running five IS programs) where we

investigated the relationship between exercised IS practices and resulting IS collabora-

tion.

• Chapter 6 (discussion and conclusion) closes this thesis by laying out future research,

highlighting insights relevant to the practitioner community, and presenting our con-

clusions.

8

2
Inner Source Taxonomy

A steady stream of scientific literature (and gray literature such as blog posts andmagazine arti-

cles) since 2001 indicates a vivid interest in inner source (IS) by both researcher and practitioner

communities. Themajority of scientific publications so far present case studies of IS in the con-

text of one or a few organizations. However, the research area lacks a systematic arrangement

of prior research work: No consistent taxonomy has been presented yet. It is not clear, which

general elements constitute IS or what differences exist between IS programs.

The absence of generalizable models and definitions that have validity for more than a few

organizations leaves researchers with a weak foundation for further research. It creates uncer-

tainty and the risk that the term IS is usedwith ambiguousmeanings or varying understandings.

To this end, this chapter answers the following research question:

• RQ1: What are the elements of IS software development?

• RQ2: How do different IS implementations differ from one another?

We answer the research questions by performing a literature survey for which we considered

43 scientific publications plus additional gray literature. This chapter contributes a taxonomy

of IS consisting of the following:

• A theoretical model of elements constituting IS

9

• A classification framework for ISprograms andprojects aswell as its application toknown

instances

The remainder of this chapter is structured as follows: Section 2.1 discusses priorwork related

to our study. Section 2.2 presents our approach for literature selection and analysis. The subse-

quent sections present the results from our literature analysis: a model of elements that consti-

tute IS (section 2.3) and a classification framework of IS programs and projects (section 2.4) as

well as its application to known instances of IS (section 2.5). Section 2.6 closes the chapter with

our conclusions.

2.1 RelatedWork

Naturally, the results of a literature survey study on IS contain, summarize, and rearrange publi-

cations related to IS and our research objectives. However, some publications presented similar

contributions to ours. In the next paragraphs, we briefly discuss the relationship of this prior

work to the results we present.

2.1.1 Elements of Inner Source

Sharma et al. (2002) analyzed open source (OS) communities and derived a framework for cre-

ating IS communities. Their framework suggests that community building, governance of the

community, and community infrastructure are critical to IS adoption. Stol et al. (2014) pre-

sented a model of nine key factors regarding software products, practices & tools, and organiza-

tion& community that need to be considered for successful IS adoption. Contrary to the mod-

els by Sharma et al. (2002) and Stol et al. (2014), ourmodel does not aim to explain IS adoption

but to define IS and its elements. Stol et al. (2014) also discussed attributes that characterize

IS. Our model of elements of IS integrates some of their attributes (for example, “universal ac-

cess to development artifacts” and “informal communication” as part of the open environment

element). However, our model presents a more extensive and detailed account of IS elements.

Other models also aim to characterize IS itself and not only the IS adoption. Vitharana et al.

(2010) present a theoretical model of IS based on a case study within IBM’s IS program called

Community Source. Their paper shows that IS adoption leads to an open development infras-

tructure, information sharing, and broader community skills which finally results in enhanced

10

reuse. The model does not discuss which elements constitute IS. Gaughan et al. (2009) intro-

duced a model describing IS based on prerequisites, challenges, benefits, practices of IS regard-

ing developed software products and the processes. The model does not present the elements

IS is composed of.

Each of the mentionedmodels delivers a specific perspective on IS but none describes which

elements constitute IS or distinguish it from other development approaches. In section 2.3, we

will present a theoretical model closing this gap.

2.1.2 Classification Framework

We are not the first to present a classification framework of IS. Gurbani et al. (2010) introduced

a classification model differentiating between infrastructure-based IS where a central group

provides IS infrastructure and parties within the organization can run their own IS projects

and project-specific IS where one often strategically important IS project is developed. Stol

et al. (2014) classified IS programs of nine organizations according to this model. They found

infrastructure-based IS to be more prevalent than project-specific IS.

Lindman et al. (2013) introduced a model distinguishing between private-market IS where

organizational units (org. units) can place software components for sale at an internal ISmarket

and local-library IS where the use of components is free.

We integrated the models of Gurbani et al. (2010) and Lindman et al. (2013) into our IS

classification framework in section 2.4.

2.2 Research Approach

We followed a two phase research approach. First, in the literature selection phase, we identi-

fied relevant IS literature. Second, in the literature analysis phase, we analyzed and systemati-

cally arranged the literature. We did not execute these phases strictly sequentially but repeated

literature selection multiple times after starting the literature analysis to also cover newer pub-

lications.

2.2.1 Literature Selection

For literature selection, we followed a five step approach.

11

Step 1) Identifypapersusingkeywordsearch For identifying literature,weperformed

a keyword search using Google Scholar, the ACMdigital library, and IEEEXplore. We utilized

a variety of keywords, phrases, and combinations:

• Inner source, internal open source, firm-internal open source, in-house open source, in-

side open source, hybrid open source (regarding coordinated IS efforts)

• Social collaboration, open collaboration, social coding (broader context of open collab-

oration within organizations)

We focused on publications in the field of computer science, information systems, and software

engineering. We quicky found that the body of literature regarding IS was significantly smaller

compared to more established software development methods. As a consequence, it was not

necessary to define narrower keywords.

In their guidelines for literature reviews, Webster and Watson (2002) argue that “major con-

tributions are likely to be in the leading journals” and thus suggest “to start with them” when

selecting literature. We explicitly did not follow this suggestion. For an emerging and not yet

mature topic as IS, we assumed that a majority of literature might not be published in top soft-

ware engineering journals and conferences but in lower ranked peer-reviewed venues.

Step2)Decideoninclusion, exclusion Subsequently,wemanually determinedwhether

to include or exclude publications identified in step (1) by investigating whether they address

IS or not. We did so by reading the title, the abstract, or the full publication.

Step 3) Perform “snowballing” For each included paper, we performed “snowballing”

(Wohlin 2014): We transitively checked all forward and backward references of each included

paper and decidedwhether to include them aswell (see step 2) until the population of literature

was exhausted.

Step 4) Check authors’ publications For all included publications, we searched for

other publications by the same authors and decided whether they could be included (see step

2) and repeated snowballing where necessary (see step 3).

12

Figure 2.1: Inner source related publications over time

Figure 2.2: Inner source related publications by organization

Step 5) Ask for expert review Webster andWatson (2002) discuss there is a high chance

to miss articles in literature review but that such missing articles are “likely to be identified by

colleagues who read your paper”. We asked two individuals outside our research group who

performed significant research on IS to review a draft of the paper that is the foundation for

this chapter and incorporated their feedback.

2.2.2 Resulting Literature

Our literature collection resulted in a total of 43 publications regarding IS. We identified con-

ference papers (12), book chapters (7), journal articles (6), technical reports (5), workshop pa-

pers (3), and articles published in other venues (10). Eight non-scientific articles (blog entries,

magazines) were cited by the publications or found relevant for this survey. Figure 2.1 shows

the number of IS publications in journals, conferences, and other venues per year. For com-

pleteness, it also shows non-scientific literature as supplementary materials. A steady stream

of publications can be observed, with the exception of 2003 and 2004, when nothing was con-

tributed. Amajority of the identified literaturewere case studies or reports regarding specific IS

programs (27). The surveyed literature reports about at least 16 organizations utilizing IS. Fig-

13

ure 2.2 shows the amount of literature regarding each organization ordered by the amount of

scientific publications. Supplementary material and non-scientific publications are indicated

by hachured filling. Only six organizations were discussed more than once in scientific litera-

ture. GlobalSoft is a pseudonym for one organization whose name was not disclosed by the

authors of the surveyed papers.

Five organizations did not have a significant impact on our survey study and are marked

with an asterisk (*). Literature only allowed superficial insights into the IS programs at DLR

(Schreiber et al. 2014) and Kitware (Martin andHoffman 2007). At Neopost and Rolls-Royce,

no in-depth case studies were performed. Much more, Stol et al. (2014) performed evaluating

case studies at these organizations evaluating nine factors of IS adoption they have identified.

Regarding Ericsson, Torkar et al. (2011) only analyzed the process alignment of Ericsson devel-

opment and OS processes in preparation of IS adoption. For further analyses we focus on the

organizations (and their respective IS programs) that are not marked with an asterisk. Table 2.1

summarizes the resulting 13 IS programs that we considered for the survey.

Table 2.1: Overview of organizations using inner source

Org. Program Summary

DTE

Energy

(No name) DTE Energy adopted IS. They opened up all their source code and made

it accessible to all developers within the organization. Through trainings

and gatherings a community that transcended organizational units was

formed (Smith and Garber-Brown 2007).

Google (No name) All source code at Google shares a single repository. All developers have

read access and are encouraged to contribute (Whittaker et al. 2012). Devel-

opers canutilize 20%of their time forprojects out of their immediate scope

which can lead to volunteering like in open source (Google-Blog 2006).

HP Collaborative

Development

Program (CDP)

The CDP is an IS program offering a set of web-based collaboration tools.

CDP is not only designed to enable collaboration of HP employees but

also collaboration with partners and contractors ofHP (Dinkelacker et al.

2002). Dinkelacker et al. (2002) coined the term controlled source to de-

scribe a development model where business partners collaborate on pro-

prietary software using open source practices. We refer to this model as

partner source. In this thesis, we will only discuss inner source but not

partner source.

14

Table 2.1: Overview of organizations using inner source - continued

Org. Program Summary

HP Corporate

Source (CS)

CS is an IS program which was initially founded to extend HP’s research

community into the organizational units at HP that develop products.

A searchable intranet website makes IS projects within the IS portfolio

searchable for developers (Dinkelacker et al. 2002).

IBM Community

Source (CMS)

CMS is a ISprogramprogrambased around a set of provided tools (project

hosting, software repositories, mailing lists, bug trackers). It makes se-

lected confidential software components available to developers that are

not directly involved with the projects. Manager approval is needed for

taking part (Vitharana et al. 2010; Fox 2007).

IBM IBM Internal

Open Source

Bazaar (IIOSB)

IIOSB is built on the same set of tools as IBM’s community source but

makes source code available to all developers within the organizationwith-

out the need of a manager’s approval. Developers are empowered to con-

tribute to projects outside their scope with little effort (Vitharana et al.

2010).

Lucent (No name) A developer at Lucent implemented a Session Initiation Protocol (SIP)

server. SIP is a protocol for communications and telephony. The devel-

oper stepwisemade the implementation and later the source code available

to developers within the organization (Gurbani et al. 2006). An internal

groupwas founded to steer the company-wide collaboration regarding the

project (Gurbani et al. 2010).

Microsoft CodeBox CodeBox is a software forge and IS program at Microsoft (Asay 2007).

Some groups of Microsoft’s research and development departments use

CodeBox as primarydevelopment infrastructure andproject communities

have formed around the developed software (Microsoft 2008). A similar

software forge is publicly available under the name CodePlex.

Nokia iSource Nokia’s iSource is a firm internal software forge and IS program. The un-

derlying forge is based on a fork of the sourceforge.net software. AllNokia

engineers can participate in iSource which is counting over 100 IS projects

as of 2008 (Lindman et al. 2008).

15

Table 2.1: Overview of organizations using inner source - continued

Org. Program Summary

Philips (No name) Philips applies IS as part of their product line engineering for medical de-

vices. General implementations like an implementation of the DICOM

medical imaging standard are developedusing an IS approach (vanderLin-

den 2009). Before adopting IS, Philips implemented market mechanisms

that forced reusers to pay a fee for using a component (Wesselius 2008).

SAP Firm Internal

Software Forge

SAP’s firm internal software forge was created by internal research depart-

ments with the main goal of enhancing the research to product transfer

and embracing the principles of open collaboration within SAP. As of

June 2007 over 400 projects were reported to use the SAP internal soft-

ware forge (Riehle et al. 2009).

Department

of Defense

Forge.mil Forge.mil is a software forge and IS program used by the United States

Department of Defense to collaborate internally and with their partners.

Forge.mil allows collaboration with employees within or with partners

outside the organization (Martin and Lippold 2011). It is therefore an in-

stance of inner source and partner source.

GlobalSoft (No name) GlobalSoft adopted IS to in the context of their software product line engi-

neering (Höst et al. 2014). The name is a pseudonymof a case organization

that was not disclosed.

2.2.3 Literature Analysis

We analyzed the literature to build our theoretical model of elements that constitute IS and to

develop the classification framework for IS.

Elements of inner source

One of this chapter’s contribution is a theoreticalmodel of elements that constitute IS. To iden-

tify these elements, we utilized inductive theory generation (amethod for analysis of qualitative

data) by Thomas (2006) using the surveyed literature as input data. Inductive theory gener-

ation required us to code segments within all considered publications into categories. This

process is called a ‘coding process’.

16

The coding process suggested by Thomas (2006) consists of five steps: Initially, we famil-

iarized ourselves with the literature (1) and subsequently identified and labeled text segments

with categories related to our objective of identifying elements that constitute IS (2). These

categories then were grouped by common themes (3). Finally, we reduced the amount of cate-

gories by reducing overlap and redundancy among them (4) and discarded categories with little

importance (5). We used the software tool MaxQDA* for this coding.

This process resulted in a hierarchical arrangement of codes (a so called ‘code system’) with

four top-level categories, lower-level categories belonging to these categories, and links express-

ing which text segments were labeled to belong to these categories. We transfered this code sys-

tem into our model of elements of IS (section 2.3). The resulting model is a qualitative model.

Contrary to quantitative models that represent or predict phenomenamathematically, qualita-

tive models express concepts and their relationships.

Classification framework

This chapter contributes a classification framework for IS programs and projects. During the

third and fourth phases of the coding process regarding the elements of IS, we found cate-

gories that contradicted each other. For example, some organizations internally opened all their

source code for IS, while others selected specific components to be inner-sourced. These cat-

egories were obviously not fit to describe general elements of IS. However, they can serve to

describe variation points of IS. We integrated both the contradicting categories and classifica-

tions from known literature into our classification framework presented in section 2.4.

2.3 Key Elements of Inner Source

The discussed definitions define IS and the concepts surrounding it, but they do not describe

the elements it is composed of. Therefore, we present a qualitative theoretical model character-

izing IS based on four elements that have been extracted from the surveyed literature.

Figure 2.3 shows an overview of our model of elements of IS. The elements in the model are

derived from the categories in the code system that resulted from the qualitative data analysis as

described in section 2.2. The gray areas are the four elements of IS (top-level categories of our

*MaxQDA is a proprietary software tool that supports the coding process in quliatative data analysis. Further
information on MaxQDA can be found on http://www.maxqda.com.

17

http://www.maxqda.com

Figure 2.3: Theoretical model of inner source elements

Program-Wide
Identity

Values of
Open Collaboration

Shared Cultural Values

Participatory Reuse Self-Selection of Tasks Volunteering
Collaborative
Development

Inner Source Scenarios

Communities around Software

Program-Wide
Communities

Project-Specific
Communities

Open Communication Open Development Artifacts

Open Environment

C
ollab

orate in
specific

sce
na

rios

E
na

ble

F
orm

a
tio

n of
C

o
m

m
u

nities

Shape
Communities

code system regarding the elements of IS). The white boxes (second-level categories) further

specify the attributes of these elements. We identified IS to be composed of four key elements:

1. An open environment is created by opening up development artifacts, inviting external

contributors, and establishing open communication.

2. Shared cultural values are internalized by individuals within the organization.

3. Empowered by the open environment and shared cultural values, communities around

software form.

4. IS collaboration is exercised in specific IS scenarios by a project-specific or program-wide

community.

The arrows in figure 2.3 indicate the relationships between the elements of IS. The open envi-

ronment enables developers to form communities around software. The communities around

software are shaped by shared cultural values and exercise IS collaboration in specific IS scenar-

ios.

18

2.3.1 Open Environment

IS embraces an open environment. We found this open environment to be characterized by

open communication and open development artifacts. Openness includes the transparency of

information and artifacts (Stol et al. 2014) but also the possibility for individuals to participate

in projects and communication outside their assigned projects or without a superior’s approval

(Riehle et al. 2009; Neus and Scherf 2005).

Open communication

In the context of OS, Riehle (2015) defines open communication to be public, written, com-

plete, and archived. The surveyed literature shows that open communication is an element of

IS. Neus and Scherf (2005) suggest open communication not only to be public, but also open

for everybody to contribute to. Melian (2007) discusses open communication in IS utilizing

the framework by Clark and Brennan (1991). She found that open communication impacts all

dimensions of communication their framework proposes.

IBM (Vitharana et al. 2010), HP (Melian et al. 2002), Google (Whittaker et al. 2012), Philips

(van der Linden 2013), Nokia (Lindman et al. 2010), and DTE Energy (Smith and Garber-

Brown2007)utilizemailing lists to implementopen communication. Smith andGarber-Brown

(2007) summarizes the benefits of open communicationwithmailing lists: “[Most community

members] preferred to use themailing lists because the lists allowed them tomultitask between

receiving help and performing project duties”. Martin and Hoffman (2007) summarize that

“mailing lists have proven to be an indispensable form of communication between software de-

velopers and users”. Forums are an alternative implementation of open communication (Mi-

crosoft 2008; Lindman et al. 2010; Vitharana et al. 2010). Generally, informal communication

channels can be observed in IS (Stol et al. 2014).

However, the surveyedpublications donot indicate howcomplete the open communication

was. Contrary to OS, some IS developers may still share a physical working space. We assume

this can decrease the completeness of open communication. Smith and Garber-Brown (2007)

suggest to focus on open (electronic) communication means whenever possible.

19

Open development artifacts

IS is characterized by the openness of development artifacts for example, source code or docu-

mentation. This openness has two consequences:

First, the open artifacts can be read and reused. IS grants developers “universal access to

development artifacts” (Stol et al. 2014). All organizations in the surveyed literature with the

exceptionofKitware (Martin andHoffman 2007) openedparts or all of their source code repos-

itories internally. Melian et al. (2002) of HP summarizes: “From the open source development

paradigm, [IS] borrows the notion ofmaking source code available freely (openly) for all mem-

bers of the community”. To make source code easily usable as quick as possible, IS, like OS,

encourages early and frequent releases of new incremental versions of IS software components

(van der Linden 2009;Gurbani et al. 2006;Martin andLippold 2011; Stol et al. 2014). Internally

opened source code is the most obvious but not the only form of open development artifacts

(Robbins 2007). Openness of source code alone is not sufficient for enabling collaboration

within a community. Also, the information and knowledge regarding IS projects needs to be

accessible to the community’s members. Van der Linden (2013) concludes that “to support this

inner [source] collaboration, the platform documentation should be open. [...] Consequently

[...] relevant documentation was published on an internal website, which was easily accessi-

ble for all development departments”. An important side effect of opening up work artifacts

is that not only the artifacts itself but also the work performed on them is publicized. This

enables individuals to infer other individuals’ and org. units’ goals (Dabbish et al. 2012).

Secondly, in addition to reading and using open development artifacts, developers can con-

tribute changes towards code and documentation even if the project is outside of their org.

unit’s responsibility. Riehle et al. (2009) describe that it was a key design element of the in-

ternal forge at the center of their IS program to reduce “the technical and practical hurdle of

joining and becoming active in a project” and consequently enhance the projects’ openness for

contributions. Developers are able to send patches (small packages of code changes) with bug

fixes, new features or other additions to the owners of an IS software component (Gurbani et al.

2010; van der Linden 2013). As inOS, the owners review the patch and decide based on itsmerit

whether to reject or accept it (Gurbani et al. 2005, 2006; Riehle et al. 2009)†. Once a patch has

†Gurbani et al. (2005) is a workshop paper with similar content as Gurbani et al. (2006). We omit the earlier
iteration for the remainder of this thesis.

20

been accepted, it is the IS project’s responsibility to maintain this portion of the code. As in

OS, individuals can be granted the right to commit patches themselves (so called committers)

without going through this review process. At Google, developers that have proven defined

skills get write access to a selected subset of the IS portfolio (Whittaker et al. 2012).

2.3.2 Shared Cultural Values

In the IS programs in the surveyed literature, specific cultural values are lived. IS embraces a

program-wide identity and the values of open collaboration. While culture is not as easily visi-

ble as processes or organizational structure, we found shared cultural values to be an important

element of IS.

Program-wide identity

Developers of an organization do not exclusively identify with their organization and its goals.

Often developers also identify with their team or with the specific product or component they

work on. Developers in IS share a program-wide or even organization-wide identity. They iden-

tify with the IS program, the IS projects they are involved in, and the respective IS community.

Such a program-wide identity is desirable from an organization’s perspective: The focus of

IS communities is not the local success of one individual, team, or org. unit but the success of

the whole IS program or even organization (Wesselius 2008;Martin and Lippold 2011). To em-

brace a program-wide identity, organizations undertook efforts (e.g. trainings and seminars)

to establish trust among emplyoees from different org. units (Melian et al. 2002; Martin and

Lippold 2011). Melian et al. (2002) summarize that “it is of great importance to establish and

build strong working relationships and trust, especially when the work teams are globally dis-

tributed”.

Values of open collaboration

IS implements the three values of open collaboration as defined by Riehle et al. (2009): egali-

tarianism, meritocracy, and self-organization.

IS projects are egalitarian. Every contributor who is willing to help an IS project is typically

welcome. Contributions to IS projects are typically judged meritocratically based on the value

they bring to the project. Meritocracy can also be enabled by open communication as decisions

21

are discussed publicly. To adopt IS, an organization does not necessarily have to become com-

pletely self-organizing. Still, IS allows individuals, org. units, and project communities a higher

degree of self organization (Riehle et al. 2009).

2.3.3 Communities around Software

Communities around software are a key element of IS. Wesselius (2008) of Philips emphasizes

the important role of the community element: “Companies using the [IS software] approach

essentially establish an [OS software] community within the confines of their organization.”

Organizations have implemented program-wide (Dinkelacker et al. 2002; Smith and Garber-

Brown 2007;Microsoft 2008) and project-specific IS communities (Melian et al. 2002;Gurbani

et al. 2006, 2010; Martin and Hoffman 2007; Riehle et al. 2009; van der Linden 2013).

In OS and IS research, the concept of community has been defined in various ways that are

not always compatible to one another and have differing levels of precision. As part of this

survey study, we do not aim to resolve this deficiency. For the remainder of this chapter, we

define a community broadly as an informal organization of individuals that communicate and

collaborate with each other. In IS, these communities cross org. unit boundaries.

Program-wide communities

In IS, not only the project-specific but also the program- or organization-wide view is impor-

tant. While project-specific communities form around one specific IS project, program-wide

communities exist that form around the whole IS program. The participants of this commu-

nity are a joint set of the participants in project-specific communities. Microsoft (Microsoft

2008) andHP (Dinkelacker et al. 2002) observed the formation of program-wide communities.

At DTE Energy (Smith and Garber-Brown 2007) and Kitware (Martin and Hoffman 2007)

program-wide communities were stimulated to enable knowledge exchange and networking

among individuals within the organization.

Project-specific communities

Themain focus of participants in project-specific communities is to collaboratively develop, use

or contribute to one specific IS project. Project-specific communities formed around Lucent’s

SIP transactionmanager (Gurbani et al. 2006, 2010), SAP’smobile retail prototype (Riehle et al.

22

2009), Philips’ medical imaging components (Wesselius 2008; van der Linden 2009; van der

Linden et al. 2009), and projects at HP (Melian et al. 2002) and Microsoft (Microsoft 2008).

Within an IS program, multiple project-specific communities can exist. Project-specific com-

munities can also be found in the OSworld (for example, the communities around specific OS

projects like JUnit or Libre Office).

2.3.4 Inner Source Scenarios

Basedon the surveyed literature,we identified four IS scenarios (participatory reuse, self-selection

of tasks, volunteering, collaborative development projects). For a given IS program, it is not

necessary that all IS scenarios exist for the program to be called an IS program. We believe that

more than the identified IS scenarios can be implemented in IS programs. We propose future

research to identify additional scenarios either by observing IS programs or the OS world.

Participatory reuse

Participatory reuse is a form of software reuse in which individuals participate in developing

andmaintaining the software they reuse (Vitharana et al. 2010). The termwas coined by Vitha-

rana et al. (2010) to describe a “scenario in which potential reusers participate in the entire de-

velopment process (e.g. analysis, design, development, testing) to ensure that the project assets

meet their reuse needs”. Reuse evolves from a one-way street where existing software is only

consumed into a two-way streetwhere developers use and contribute to the software (Wesselius

2008; van der Linden 2013). Individuals can contribute patches to software components they

are reusing as part of their work in order tomake them fit for their particular needs. Individuals

do not self-select which component to contribute to based on their interest or qualification.

Participatory reuse can also be found in the OS world. Wesselius (2008) summarizes: “In

[OS], a community works together to develop software. Because the software’s users are part

of the community, they can add the assets they need.”

Self-selection of tasks

Self-selection of tasks allows developers to choose by themselves which development work to

perform. To enable self-selection of tasks, Google implemented the “20% time” (Hamel 2008;

23

Whittaker et al. 2012). The 20% time allows employees to use 20% of their work time to partic-

ipate on projects outside the scope of their everyday work (Hamel 2008; Whittaker et al. 2012).

A Google employee (Google-Blog 2006) reports that “The 20 percent time is a well-known

part of our philosophy here, enabling engineers to spend one day a week working on projects

that aren’t necessarily in our job descriptions.” The organization-wide open code repository

of Google (Whittaker et al. 2012) enables developers to use this time for contributions to open

projects, turning them into IS projects.

Volunteering

Organizations reported about volunteering developers that were motivated to contribute to

IS projects in their spare time for fun, to develop their professional skills or to gain reputation

(Gurbani et al. 2006; Riehle et al. 2009; Stol et al. 2014). Riehle et al. (2009) summarize: “Even

with traditional top-down structured software development organizations, [IS] projects can

gather internal volunteer contributions. [...] Volunteers are motivated to contribute, because

it is their decision to contribute and they can gain reputation and visibility within the company

outside their current primary projects.”

Volunteering differs from self-selection of tasks. While in self-selection of tasks developers

use working time to perform self-selected programming tasks, volunteers use their spare time

for contributing to the organization’s IS projects.

Collaborative development projects

The majority of the presented IS scnearios is based on developers contributing code to an IS

project via patches. These can either be rejected or accepted by the committers of an IS project.

In OS, it can be observed that a core team of developers creates a component collaboratively.

A bazaar-style development as described byRaymond (1999) does not happen instantly but the

core team develops the component and shares its ownership. Later, bazaar-style practices, e.g.

based on contributing patches, can occur in such a project (Senyard and Michlmayr 2004).

The surveyed literature reported on similar scenarios in IS.Organizations performed collabo-
rative development projects in which they joined resources from different org. units to develop
an IS software component these org. units had a shared interest in:

24

“GlobalSoft adopted the concept of so-called collaborative development projects. [...] In practice,

this resulted in temporary, virtual teams that work together [...] to develop a new (or enrich an

existing) component [...].” (Höst et al. 2014) regarding GlobalSoft

“Our current approach is to start codevelopment [collaborative development] projects in which

systems-group and component-group developers work together to create new assets that are rele-

vant to the participating systems group.” (Wesselius 2008) regarding Philips

In collaborativedevelopmentprojects, the involvedparties havemore influence in the ISprojects

than contributors in other IS scenarios.

2.4 Classification Framework for Inner Source

We combined findings from the surveyed literature with known IS classification models to de-

rive our classification framework for IS. This classification framework is composed of one clas-

sification framework for IS programs and one for IS projects.

We found that IS programs differ in at least three dimensions (prevalence, degree of self-

organization, internal economics). Our classification framework for IS programs delivers a

multi-dimensional classification of IS programs based on these dimensions. For each of the

three dimensions, the framework lays out possible classes. An IS program belongs to exactly

one class per dimension (resulting in a total of three classes per IS program). Our classification

framework for IS projects works analogously to the classification framework for IS programs.

We found IS projects to differ in at least two dimensions (governance, objective).

Figure 2.4 and figure 2.4 give anoverviewof the classification framework, its dimensions, and

which classes an IS program or project can fall into for each of the dimensions. Each column

represents one dimension. The possible classes are shown as gray boxes. The light gray text

under each column indicates how it was derived.

We believe the space of possible IS programs and projects not to be limited to the identi-

fied dimensions. We suggest future research to identify additional dimensions or classes of IS

programs and projects.

2.4.1 Classification of Inner Source Programs

The classification framework of IS programs is based on the three dimensions prevalence, de-

gree of self-organization, and internal economics. The prevalence dimension is based on the

25

Figure 2.4: Classification framework of inner source programs

Prevalence
Internal

Economics

Selective

Universal Local-Library

Dimensions of IS Programs

Degree of
Self-Organization

Assigned Tasks &
Free Component Choice

Free Task Choice &
Free Component Choice

Project-Specific

Private-Market

Assigned Tasks &
Assigned Components

extension of classification
of Gurbani et al. (2010)

based on findings in literature

from surveyed case studies integration of classification
by Lindman et al. (2013)

into our framework

Figure 2.5: Classification framework of inner source projects

Ownership

All
Organizational Units

Multiple
Organizational Units

Dimensions of IS Projects

Single
Organizational Unit

Objective

Service-
Oriented

Utility-
Oriented

Exploration-
Oriented

from surveyed case studies application of model by
Nakakoij et al. (2002)

to inner source

26

classification model presented by Gurbani et al. (2010). As a result of our qualitative data anal-

ysis of the surveyed literature (primarily the surveyed case studies), we extended their model to

form theprevalence dimension. The internal economics dimension integrated the classification

model of Lindman et al. (2013) into our framework. The different degrees of self-organization

were derived solely from qualitative data analysis. The next paragraphs discuss these three di-

mensions in more detail.

Prevalence

Gurbani et al. (2010) presented a classification of IS programs based on their prevalence within

theorganization. Theydistinguishproject-specific and infrastructure-based ISprograms. Project-

specific IS programs are focused on one specific IS projectwhich is usually a primary technology

of the organization, of high strategic or operative importance, or has many stakeholders rely-

ing on it. In a project-specific IS program the IS project provides the development infrastruc-

ture. Contrary to this, in infrastructure-based IS programs, the organization provides develop-

ment infrastructure and enables individuals or org. units to host their IS projects on it. In an

infrastructure-based IS program, IS has a higher prevalence within the organization (Gurbani

et al. 2010).

In the surveyed literature, we found that infrastructure-based IS programs can be differen-

tiated further. A fraction of the infrastructure-based IS programs inner-sourced only some

components while in others all of the organization’s software components were inner-sourced.

We call these IS programs selective and universal IS programs. Consequently, we extend the clas-

sification by Gurbani et al. (2010) and consider the following three classes of an IS program’s

prevalence:

• Universal: All of the organization’s software artifacts are publicized as an IS software

component. There is no software component that is not inner-sourced.

• Selective: Only selected software artifacts are publicized as IS software. The remaining

software components are not inner-sourced. Consequently, many IS projects exist.

• Project-Specific (Gurbani et al. 2010): The majority of software components is not inner-

sourced. Only a specific IS project is run within the IS program.

27

Of the three presented variants, implementing universal IS program has the largest impact on

the organization: Every software component is made internally available.

An organization running a universal IS program may decide to exclude a few components

from the IS portfolio for idiosyncratic reasons (for example, due to security or intellectual prop-

erty concerns). We suggest to still classify such IS programs as universal IS if the vast majority

of software is IS software and components are only excluded from the IS portfolio on strictly

exceptional basis.

Degree of Self-Organization

The IS programs described by the surveyed literature grant individuals a varying degree of self-

organization by allowing or not allowing them to self-responsibly choose which IS software

components to reuse and/or which tasks within the IS program to work on. In the surveyed

literature, we found the following three classes:

• Free task choice and free component choice: Individuals can choose which components to

reuse and (at least a fraction of) their every-day tasks. Consequently, they not only con-

tribute to IS software components used as part of their assigned everydaywork. They are

also enabled to contribute to IS software components thatmatch their personal interests

or expertise.

• Assigned Tasks and free component choice: Tasks are assigned to the individual developer

in a traditional way. However, individuals can choose which IS software components

to reuse for finishing their assigned tasks. No corset forces an individual to reuse one

specific IS software component.

• Assigned Tasks and Assigned Components: The elements of IS (see section 2.3) are imple-

mented. However, no other freedoms are granted to individuals. They have no right to

freely choose which IS software components to reuse as part of their work. The used

components are predefined by an existing corset (e.g. a software product line (SPL)

setup).

We did not find any indication of a fourth class free task choice and assigned components in the

surveyed literature.

28

Internal Economics

We integrate the classification of IS programs by Lindman et al. (2013) into our classification

framework. They classify IS programs based on the IS program’s internal economics into the

following two classes:

• Local-library: Every party within the program-wide community can reuse the IS soft-

ware asset free of charge. Contributions to the IS portfolio are not reimbursed or spe-

cially expedited (Lindman et al. 2013).

• Private-market: Internal market mechanisms are in place to regulate and steer contribu-

tions and reuse (Lindman et al. 2013).

One could argue that an IS program with a private-market is not an IS program at all, as it

potentially hinders reuse and collaboration. However, in our experience some organizations

implement complex cost allocation schemes which make it necessary to use private-market IS

programs. Lindman et al. (2013) summarizes that a private-market “does present some benefits

of open innovation (ideas flowing freely, quick diffusion of inventions to enable incremental

innovation, reuse) while addressing the appropriation in a fairly practical manner”.

2.4.2 Classification of Inner Source Projects

We classify IS projects based on two dimensions: The governance dimension describes who is

responsible for the project and the developed IS software component. The objective dimension

describes what the project is aiming to achieve. Our qualitative data analysis of the surveyed

literature (primarily the surveyed case studies) indicated IS projects’ variations in both dimen-

sions. For the governance dimension, the classes result exclusively from our qualitative data

analysis. For the objective dimension, we integrated a project classification model from the OS

world (Nakakoji et al. 2002) into our framework.

Governance

Governance of IS projects and regard IS software components was implemented in different

ways by the IS projects described in the literature. As a result of our qualitative data analysis,

we identified three classes that describe how governance of IS projects was implemented. We

observed governance by a single org. unit,multiple org. units, and all org. units.

29

• Single org. unit: The IS project is explicitly governed by one single org. unit.

• Multiple org. units (governance board): The IS project is governed by a board formed of

multiple org. units.

• All org. units: The IS project is not governed by a select group of org. units. The IS soft-

ware component is seen as commodity. Governance and ownership is shared between

all org. units in the organization.

Both governance by a single or multiple org. units require an explicit proclamation of responsi-

ble org. units for the outcomes of an IS project. We believe collaborative development projects

as described in section 2.3 to typically result in governance of an IS project being executed by

multiple org. units because in such projects multiple parties have a stake in the IS project from

the very beginning.

Gurbani et al. (2010) reported on roles they implemented to enable the govenrance of a IS

project governed bymultiple org. units. They defined explicit management roles (project man-

agers, software architects) and roles for mediation between the core team of the IS project and

its users.

In Stellman and Greene (2009), Auke Jilderda describes that explicitly defined ownership

(and consequently governance by these owners) is an important attribute of each IS software

component. He argues that some entity should always have a final say about the development

direction or onwhether to accept a contribution. However,Whittaker et al. (2012) and Linåker

et al. (2014) discussed IS projects that were not governed by select org. units but by all org. units

equally. Whittaker et al. (2012) uses the term “shared” components or libraries to refer to IS

software components resulting from such projects. The surveyed literature did not present

examples of IS projects governed by all org. units. However, the literature discussed the char-

acteristics of such projects.

Linåker et al. (2014) discuss that such IS projects “do not need any administration or anyone

responsible for the development of the component”.

At Google, multiple of such projects exist (Whittaker et al. 2012). While the governance of

these projects is independent of particular org. units, a developer has to follow defined rules

when contributing to these projects (Whittaker et al. 2012). Before performing a modification,

a committee needs to certify the developer’s proficiency in the relevant programming languages

30

(Whittaker et al. 2012). Strict requirements to the test coverage of shared components and a

mandatory review process are in place to mitigate quality degregation (Whittaker et al. 2012).

Also, a developer is responsible for adapting other components that depend on the modified

component if necessary (Whittaker et al. 2012).

Still, IS projects governed by all org. units equally are not broadly researched. It is unclear

how conflicts can be resolved effectively, which components are fit to be governed in such a

way, or how software evolution can bemanaged in such projects. We suggest future research to

address these issues.

Objective

IS projects described in literature served different objectives. In the OS context, Nakakoji et al.

(2002) identified three different classes of projects depending on the project’s primary objectives.

Based on the surveyed literature, we found their objectives to be fit for classifying IS projects

as well. In analogy to Nakakoji et al. (2002), we use the following three classes to express the

objectives of an IS project:

• Exploration-oriented: The IS project aims to make innovation accesible to the whole

program-wide IS community. Nakakoji et al. (2002) note that due to their “epistemic

nature” such projects usually have high quality requirements. Contribution of feedback

(e.g. via mailing lists) is particularly important for an exploration-oriented project.

• Utility-oriented: The IS project aims to fill an immediate need in functionality. Typi-

cally, the developers of the initial code are an individual or a small partywho “cannot find

an existing program that fulfills their needs completely” (Nakakoji et al. 2002). Utility-

oriented projects usually have only a small project-specific community or their commu-

nity exists as part of larger community (e.g. if the utility-oriented project is part of the

ecosystem of another IS project).

• Service-oriented: The IS project’s main goal is to provide “stable and robust services” to

end-users of the IS software software (Nakakoji et al. 2002). Service-oriented projects

typically produce business critical IS software software components, have high quality

requirements, and are conservative against rapid changes (Nakakoji et al. 2002).

31

AnOS project’s objective can change during its life-cycle (Nakakoji et al. 2002). As inOS, an IS

project can evolve and its objective change. Lucent’s SIP transaction manager (Gurbani et al.

2006, 2010) started as an exploration-oriented IS project. Its aim was to make innovation (in

the formof the implementation of a new telephony protocol) availablewithin the organization.

Later, it evolved into a service-oriented IS project as many products of Lucent started to rely

on it (Gurbani et al. 2006).

2.5 Application of the Classification Framework

In this section, we apply the classification framework to the known instances of IS programs

and projects. The presented classification framework was derived from the IS programs and

projects in surveyed literature. Consequently, the application of the model to the same set of

programs and projects cannot serve as validation. Rather, the application of the framework

serves as a demonstration of its capabilities.

2.5.1 Application to Inner Source Programs

We classified 12 of the IS programs from the surveyed literature according to the three dimen-

sions of our classification framework for IS programs.

Table 2.2 presents how each of the known IS programs is classified according to our clas-

sification framework for IS programs. The different classes of the prevalence dimension are

expressed as columns; the different classes of the degree of self-organization dimension are ex-

pressed as rows.

Dimension: Internal economics

Table 2.2 does not show the market-mechanisms dimension because we did not find an imple-

mentation of a private-market IS program. However, the private-market idea was discussed in

the context of Nokia (Lindman et al. 2013) and Philips (Wesselius 2008; Lindman et al. 2013).

The roots of Philips’ IS program show elements of private-market IS. Initially, org. units were

required to pay a fee for reusing a component (Wesselius 2008). However, contributions from

outsiders neither occurred nor were they reimbursed to form an private market.

32

Table 2.2: Classification of inner source programs

Prevalence
Project-Specific Selective Universal

D
egree of Self-O

rganization

A
ssigned Tasks &

 A
ssigned Com

p.

• GlobalSoft / SoftCom
• Philips

none none

A
ssigned Tasks &

Free Com

p. Choice

• Lucent • HP (CDP)
• HP (CS)
• IBM (CMS
• IBM (IIOSB)
• Microsoft (CodeBox)
• Nokia
• SAP

• DTE Energy

Free Task Choice &

Free Com
p. Choice

none none

• Google

33

Dimension: Degree of Self-Organization

Regarding the degree of self-organization, we observed IS programs with assigned tasks and

components (2), assigned tasks and free component choice (9), and free task and component

choice (1). IS programs with assigned tasks and components can be found at Philips (van der

Linden 2009; van der Linden et al. 2009; van der Linden 2013) andGlobalSoft (Höst et al. 2014)

who use IS in the context of their SPL development. IS programs with free component choice

but assigned tasks were implemented at SAP (Riehle et al. 2009), Microsoft (2008), and other

organizations. Google implemented free choice of components and (to a certain degree) tasks.

They allow developers to use 20% of their time for performing work they are interested in or

deem necessary (Whittaker et al. 2012; Hamel 2008). While Google employees may use it to

initiate a new project, it is also used for contributing to IS projects (Google-Blog 2006).

For the Department of Defense’s Forge.mil program (Martin and Lippold 2011) we were not

able to determine the degree of self-organization or their internal economics.

Dimension: Prevalence

In the prevalence dimension, we observed selective (8), project-specific (3), and universal (2)

IS programs. Google’s shared source code repository (Whittaker et al. 2012) is an example of

a universal IS program. Also, DTE Energy reported to have opened up their repositories to

enable “all developers to see all code across the enterprise” (Smith and Garber-Brown 2007).

SAP’s internal software forge (Riehle et al. 2009) and IBM’s community source (Vitharana et al.

2010) are examples for selective IS programs. Only selected components are developed using IS.

Nokia’s iSource program is an instance of a selective IS program. As iSource is the standard plat-

form for all new projects that use a specific source code management (SCM) system (Lindman

et al. 2010, 2013), it could become a universal IS program gradually.

Discussion

Table 2.2 shows that a majority of the surveyed organizations implemented selective (8), and

local-library (10) IS programs with assigned tasks and free component choice (9). IS programs

with assigned tasks and components (2) or free task choice (1) as well as universal IS programs

(2) have a low prevalence.

34

Despite the few instances of programs with assigned tasks and components, we believe these

IS programs to be of high relevance for industry. Many organizations develop software in org.

units that are in a static relationship to other org. units and the software they develop (for exam-

ple due to SPL engineering). At least one organization (Siemens) that implemented software

SPL engineering indicated that IS can benefit their development (Bartholdt and Becker 2012).

Two out of the three project-specific IS programs also had assigned tasks and components.

In the cases of Philips (van der Linden 2013) and GlobalSoft (Stol 2011; Höst et al. 2014), these

IS programs were used to augment SPL development and mitigate challenges in requirements

elicitation, feature prioritization, and bottlenecks in the platform org. units.

However, IS programs with free component choice can be project-specific as well. Lucent

only developed one IS software component. Still, there are no reports that this component was

imposed on the developers. Org. units were able to decide for themselves whether or not to use

the IS software component (Gurbani et al. 2006, 2010).

Based on the information in the surveyed literature, we were only able to classify a small

amount IS programs (12). This leads to two problems:

• We were not able to identify IS programs for all possible combinations of classes. Con-

sequently, table 2.2 contains empty cells. However, we did find no indication that the

combinations with no example IS program are invalid.

• The small sample size does not allow us to draw conclusions about correlations between

classes of IS programs. We suspect that more self-organization and a higher prevalence

of an IS program could be correlated. A potential cause is that organizations that take

the risk of rolling out IS on a broader scope (higher prevalence) are also more aware of

the potential benefits of a higher degree of self-organization. For the surveyed IS pro-

grams, the prevalence and degree of self-organization dimension show higher diversity.

Regarding the internal economics dimension we observed less diversity.

We suggest further research to identify and classify additional IS programs and explore correla-

tions between classes of IS programs in the different dimensions.

35

Table 2.3: Classification of inner source projects

Objective
Exploration-Oriented Utility-Oriented Service-Oriented

G
overnance

Single
O

rganizational U
nit

• Lucent (SIP Server,
• earlier)
• SAP (Mobile Retail
• Demo)

• Microsoft (PEX) • Microsoft (CodeBox)

M
ultiple

O
rganizational U

nits
none none

• GlobalSoft (No name)
• Lucent (SIP Server,
• later)
• Philips (Medical Image
• SPL)

A
ll

O
rganizational U

nits

none none none

36

2.5.2 Application to Inner Source Projects

Six IS projects in the survyed literature were describedwith sufficient detail to allow us to apply

our framework for classifying IS projects. For one of these projects, Lucent’s SIP server (Gur-

bani et al. 2010), literature reported two different phases which we consider seperately. For

the other nine IS programs, literature did not report about specific projects. Table 2.3 summa-

rizes the classification of the six considered IS projects. The table follows the same logic as the

previous table 2.2.

Dimension: Governance

Regarding the governance dimension, literature reported projects governedby a single org. unit

(4) and multiple org. units (2). A specific project without a governing org. unit was not pre-

sented in literature. However, such projects were implemented at Google (Whittaker et al.

2012) and discussed in the context of the case study by Linåker et al. (2014). We suggest further

exploratory research on IS projects governed by all org. units and the implications for software

quality and governance.

Dimension: Objective

Regarding theobjectives, the surveyed literature reported service-oriented (4), exploration-oriented

(2), and utility-oriented (1) projects. Nakakoji et al. (2002) discussed that exploration- and

utility-oriented OS projects are typically governed by a single org. unit and evolve into service-

oriented projects owned by multiple org. units. This could be true for IS projects as well and

we suggest future research: Lucent’s SIP server changed from being governed by one to being

governed by multiple org. units after becoming a service-oriented IS project. Microsoft’s Code

Box project discussed the need to empower the contributors and users of the service-oriented

project further (Microsoft 2008). The service-oriented project at GlobalSoft implemented a

steering committee (Stol 2011; Höst et al. 2014).

Discussion

Basedon the information in the surveyed literature, wewere only able to classify a small amount

of IS projects (6). Consequently, table 2.3 contains empty cells becausewewere not able to iden-

37

tify example IS projects for every possible combination of IS classes. We found no indiciation

in the surveyed literature that specific combinations if IS projects classes are invalid.

In the surveyed IS projects, we observed a correlation between the class of an IS projects and

the IS scenarios that are common in the IS program hosting it: Volunteering or self-selection

of tasks were observed in all IS programs running exploration-oriented IS projects. We assume

innovative exploration-oriented projects to have a higher potential to attract interested indi-

viduals. Project-specific IS programs often ran service oriented projects (3/4). Gurbani et al.

(2010) describe that focusing IS efforts on one specific project is a beneficial way to deal with

critical assets. All IS programs in the surveyed literature with assigned tasks and components

implemented service-oriented projects.

2.6 Conclusion

The majority of scientific publications regarding IS describe the phenomenon in the context

of one or a few organizations. However, the research area lacked a systematic arrangement of

prior research results. With the literature survey presented in this chapter, we systematically

arranged prior research results to resolve this shortcoming.

We provided a holistic definition of IS and related concepts, a model of key elements consti-

tuting IS, and the first classification framework for IS programs and projects. We applied our

classification framework to demonstrate its capabilities and delivered a map of already known

IS programs and projects. While there are four key elements that constitute IS (values of open

collaboration, an open development environment, communities around software, specific IS

scenarios), IS programs and projects differ from one another. Researchers can use our model

of IS elements as a lens to discuss the IS programs they study and the classification framework

to reason about the generalizability of IS related theories.

38

3
Patch-Flow Measurement Method

Themajority of scientific literature regarding inner source (IS) presents only qualitative results

such as case study reports or taxonomies of IS programs and projects. There is not yet a quan-

titative study discussing the magnitude of IS and participating parties in it. We are not aware

of any established method that can be used to measure or quantify IS collaboration within an

organization. We believe that such a method is needed by both researchers and practitioners.

Researchers can use it as a base measurement and foundation for sophisticated quantitative

models such as evaluation models for IS programs or metrics for IS project performance. Prac-

titioners can use it to derive an overview of the participants in and the state of their IS program

as well as define key performance indicators based on the methods output.

In this chapter, we present a method to quantify IS collaboration by measuring an organi-

zation’s patch-flow. In open source (OS), a patch is a code contribution from an individual

external to an OS project. The word patch is historically derived from the “patch files” (pro-

duced and consumed by the “diff” and “patch” commands) that some OS projects use in their

contribution workflow. Today, patches can have different forms (for example a pull request on

a software forge like GitHub). Typically, the contributor of a patch does not have write priv-

ileges to a project’s code base. The patch has to be picked up and integrated by a person with

those privileges (called a committer). In this way, OS projects perform quality assurance of con-

39

tributed code. Patch-flow then is the flow of such patches across organizational boundaries. In

OS, boundaries might be between contributing organizations and an OS project. In IS, such

boundaries are intra-organizational boundaries like organizational unit (org. unit), project, or

profit center boundaries. When measuring the patch-flow, it is not sufficient to simply count

patches over time. One must address the organizational structure contextual to the patch.

This chapter answers the following research question:

• RQ3: How to measure IS collaboration within a software developing organization?

We answer this research question by presenting a method tomeasure patch-flow. In detail, this

chapter contributes the following:

• Definition of the patch-flow phenomenon

• A patch-flow measurement method for measuring IS collaboration

• An evaluation of the patch-flow measurement method using case study research with a

software developing multi-industry company

The remainder of this chapter is structured as follows. Section 3.1 gives an overview of the

related work detailing prior work regarding IS andmeasuring software development collabora-

tion. Section 3.2 introduces the patch-flowmeasurementmethod by defining the contribution-

flow and patch-flow phenomena, data structures to represent patch-flow and a process to mea-

sure it. We evaluate the patch-flowmeasurement method using case study research. Section 3.3

describes our evaluation approach. Section 3.4presents the findings of our evaluating case study

and section 3.5 a discussion of these findings. Section 3.6 discusses the trustworthiness of our

study. Section 3.7 closes the chapter with a conclusion.

3.1 RelatedWork

We discuss how related work has measured collaboration in the context of IS and then discuss

how prior work measured collaboration in the broader context of software development.

3.1.1 Measuring Inner Source Collaboration

Researchers and practitioners have published a steady stream of case studies with companies

that have adopted or are aiming to adopt IS including DTE Energy (Smith and Garber-Brown

40

2007), Ericsson (Torkar et al. 2011),Hewlett-Packard (Dinkelacker et al. 2002;Melian andMähring

2008), IBM (Vitharana et al. 2010), Kitware (Martin and Hoffman 2007), Lucent (Gurbani

et al. 2006, 2010), Nokia (Lindman et al. 2008), Paypal (Oram 2015), Philips (van der Linden

et al. 2009), Rolls-Royce (Stol et al. 2014), and SAP (Riehle et al. 2009).

These studies provide qualitative discussions or anecdotal evidence of the IS phenomenon.

To the best of our knowledge, no study delivers an in-depth quantitative analysis of IS collabo-

ration or method to measure it.

However, some studies report simple counting metrics. Organizations quantify the size of

an IS program by counting the number of IS projects in the portfolio (Dinkelacker et al. 2002;

Riehle et al. 2009). Other organizations extend these metrics by counting the number of de-

velopers contributing to or being committers in each IS project (Lindman et al. 2008; Torkar

et al. 2011). In contrast to our work, they do not discuss how actively IS projects receive IS con-

tributions. Gurbani et al. (2006) measured the code churn in their IS project. In contrast to

our work, they do not measure what parties are involved in contributing to the IS project.

Vitharana et al. (2010) argue thatmeasurements andmetrics regarding IS need to account for

different parties involved in IS collaboration. Our patch-flow measurement method does ex-

actly this by outputting data that shows which parties receive howmuch IS code contributions

from which parties within the organization.

3.1.2 Measuring Software Development Collaboration

Prior research addresses measurement of software development collaboration in proprietary

and OS development.

Social Network Analysis

A variety of studies analyze software development collaboration using social network analysis

(SNA).Over the last years, “applying SNA to software development teams has been a heavily re-

searched topic” (Meneely and Williams 2011). Previous research utilizes primarily two types of

social networks (Meneely and Williams 2011): Developers networks (Madey et al. 2002; Crow-

ston and Howison 2005; Schwind and Wegmann 2008; Costa et al. 2014; Tymchuk et al. 2014;

Joblin et al. 2015) and contribution networks (Pinzger et al. 2008).

41

Developer networks differ significantly from the patch-flow graphs we present. A developer

network is a graph showing relationships (edges) between developers (nodes). Researchers con-

struct developer networks by identifying “records of social or technical connections” between

developers from source code management (SCM) systems, communication logs, issue track-

ing systems, or other sources (Meneely and Williams 2011). Developer networks are capable

of representing relationships among developers (Meneely and Williams 2011) and model the

structure of development communities (Joblin et al. 2015). In contrast, this chapter presents

patch-flow graphs that use the structure of a given organization andmodel to what magnitude

parties within this structure (typically org. units) contribute to one another.

Contribution networks are graphs showing contributions of developers to one or many

source code files (Pinzger et al. 2008; Meneely and Williams 2011). A contribution network

shows source code files and developers as nodes; contributions as directed edges from a devel-

oper to a file. In both contribution network and patch-flow graph, directed edges represent

code contributions. However, the nodes differ in semantics and granularity. In a patch-flow

graph, contributing nodes do not represent individual developers but parties within an orga-

nization. Receiving nodes do not represent low-level source code files, but parties (org. units

or IS projects) receiving contributions. Nodes in the patch-flow graph can represent parties

at different levels in the organizational hierarchy. Thus, the patch-flow graph can be seen as

a generalization of contribution networks. In contrast to the contribution network, a patch-

flow graph shows aggregated contributions using information on the organizational structure.

Consequently, collaboration can be made visible even for large organizations without the in-

formation overload a contribution network would suffer from.

Other Approaches

Gousios et al. (2008) andKalliamvakou et al. (2009) present a taxonomy tomeasure and classify

contributions toOS software projects. Similar to ourwork, the contribution is the key element

of theirmodel. Theirmethod focuses on qualifying the contributions of an individual towards

an OS project. In contrast to our method, their method disregards organizational structures

because it does not aim to measure how contributions flow across an organization.

42

Begel et al. (2010) present a framework for the extraction of development meta data and

applies it at Microsoft. While they do not aim to measure the patch-flow, the described data

structures are sufficient to construct a patch-flow graph.

3.2 Patch-FlowMeasurement Method

Based on our experience from prior research on IS, we designed a method for measuring an

organization’s patch-flow and with that IS collaboration.

3.2.1 Contribution-Flow Phenomenon

IS practices can lead to a phenomenon we call contribution-flow. We define the following con-

cepts:

• A contribution to an IS project is the result of any work performed on that project.

• An IS contribution is any contributionmade to an IS project by a developer who is exter-

nal to an IS project.

• Contribution-flow is the flow of IS contributions across organizational boundaries such

as project or org. unit boundaries within an organization.

A developer is considered external to a project if not a member of the org. unit owning the

IS project. A contribution can be a code or non-code contribution. Non-code contributions

include the raising of issues in a IS project’s issue tracker, the contribution to a discussion on a

mailing list, providing code review comments for a code contribution, and others.

3.2.2 Patch-Flow Phenomenon

Patch-flow is a special case of contribution-flow. We define the following concepts:

• A code contribution is any code change performed on a software component.

• A patch is a code contribution made by a developer who is external to an IS project.

• Patch-flow is the flow of patches across organizational boundaries such as project or org.

unit boundaries within an organization.

43

Figure 3.1: Example patch-flow between four organizational units

10 patches

50 patches

30
 p

at
ch

es

10
 p

at
ch

es

5 patches

A
Organizational Unit

B
Organizational Unit

C
Organizational Unit

D
Organizational Unit

Typically, patches need approval by the committers of an IS project who decide whether to

reject a patch or enact it by integrating it into code base (Gurbani et al. 2006; Riehle et al. 2009).

Example

Figure 3.1 displays example patch-flow involving four org. units A,B,C,D. The white boxes

are org. units; the gray arrows indicate patch-flow between two org. units.

In the example, ten patches flow from org. unit A to B. That means developers allocated

to work for org. unit A contributed ten patches to components that are owned by org. unit B.

A total amount of 80 patches is received by A that only contributed 20 patches to B and C in

total.

Relationship to Inner Source

An individual within an organization takes part in IS collaboration by contributing to an IS

project provided by another org. unit (across an organizational boundary). Contributions to

an IS project can have multiple shapes: In addition to a code contribution, an individual may

contribute by reporting a bug, reviewing the contribution of somebody else, taking part in a

mailing list discussion or by other means.

In the remainder of this thesis, we do not consider the more generic contribution-flow but

focus on the flow of code contributions. This is not to discredit non-code contributions which

themselves can be of high value for an IS project and an organization. However, because soft-

ware code is the primary artifact resulting from a software development effort and a majority

44

Figure 3.2: Simplified patch-flow flow data model as UML2 class diagram

OrgUnit

CodeContribution

receiving project

author

InnerSourceProject

member

Person
*

**

hosting org unit *

of other contributions will eventually result in code contributions, the patch-flow is an appro-

priate measure for IS collaboration. More patch-flow indicates more IS collaboration.

3.2.3 Data Structures

In this section, we present an object-oriented model for representing the patch-flow within an

organization. From objects adhering to this model, patch-flow graphs in differing granularity

can be constructed.

Object-Oriented Patch-Flow Model

Figure 3.2 displays a simplified object-oriented model in UML2 annotation capable of repre-

senting patch-flow data. The key element is the code contribution (CodeContribution class)

with attributes indicating what change was performed on which files and when. For each code

contribution, it contains the person (Person class) authoring a code contribution and the IS

projects (InnerSourceProject class) receiving it. Each person and IS project is associatedwith an

org. unit (OrgUnit class). Org. units are modeled using the composite design pattern (Gamma

et al. 1994): An org. unit can be composed of child org. units.

Patch-Flow Graph

We define the term patch-flow graph as follows:

• A patch-flow graph is a directed weighted graph with org. units as nodes and weighted

edges representing patch-flow between these nodes.

Each edge weight represents the number of patches flowing.

A patch-flow graph has a density. We define patch-flow density as follows:

45

• ThedensityDof apatch-flowgraph (or anydirected graph) is defined asD = E/N(N− 1)

withN being the number of nodes (org. units) and E being the number of edges (patch-

flow relationships) in the graph.

The density of a patch-flow graph describes howmany of the possible patch-flow relationships

exist.

From the data measured in an organization (instantiating the classes presented in the previ-

ous section), multiple patch-flow graphs can be constructed depending on the granularity of

org. units. To distinguish patch-flow between org. units of different granularity, we apply the

concept of levels to the organizational hierarchy.

In a tree, the level of each node is n + 1 with n being the level of its parent. The root node

always has the level 0. Translated to organizational hierarchies, the organization itself has level

0 and its top-level org. units have level 1. Their children org. units have level 2 etc. Level 0 is

considered the highest level. We define the following terms:

• The lowest common ancestor (LCA) of two org. units is the lowest node that has both as

descendants.

• Patch-flow crosses level n if and only if n < nlca with nlca being the level of the LCA of

the contributing and the receiving org. unit.

Code contributions between descendants and ancestors not considered patch-flow. Patch-flow

crossing level n always crosses level n+ 1. The highest level crossed of a patch-flow (n = nlca− 1)

serves as ametric for the distance between the two involved org. units: Two teams in to separate

coarse-grained business units in a large conglomerate have a higher distance, then two teams

within one of these business units.

Figure 3.3 shows two patch-flow graphs visualizing patch-flow in the example organization

from theprevious section. The organization is composed of org. unitsA,B,C,D (level 1). They

each have four children numbered with A1,A2, ... (level 2).

• Part (a) shows the patch-flow crossing level 1 (between four org. units A,B,C,D).

• Part (b) is more fine-grained showing the patch-flow crossing level 2 (between the chil-

dren of A,B,C,D).

46

Figure 3.3: Patch-flow graphs with different granularity

A

B

C

D
D1 D3

D2 D4

B1 B4

B2 B3

A1 A4

A2 A3

C1 C3

C2 C4

(a) coarse-grained (b) fine-grained

Constructingdifferentpatch-flowgraphs allows researchers andpractitioners to study thepatch-

flow between org. units on different levels in the organizational hierarchy. While this “drilling

down” increases the level of detail, in organizations with a lot of patch-flow this might lead to

information overload and reduce the comprehensibility of the graph for a human reader.

3.2.4 Measurement Process

Beforemeasuring the patch-flow in an organization, we assume that a researcher or practitioner

defined a scope by deciding which IS projects to include in measurement. There are valid rea-

sons for a narrow scope and for not including all software developed within the organization:

For example, a complete list of all IS projects and software components is not always available

or an organization could decide to allow patch-flow measurement only for selected IS projects

due to the protection of intellectual property or other sensitive data. IS collaboration can occur

regarding software that is not formally part of an IS project. Thus, projects with allegedly no

IS collaboration can be considered as well.

The patch-flow in a given organization can be measured by executing the following steps:

1. Extraction of code contributions. Extract code contributions regarding the IS projects in

the scope. Typically, code contributions result in commits to a source code repository

and can be extracted from there.

2. Mapping of code contributions to IS projects. Map the receiving IS project to each code

contribution.

47

3. Extraction of organizational data. Extract data about the structure of the studied orga-

nization. Organizational data can be extracted from a variety of databases like directory

services or project management tools. However, the complexity of organizational mod-

eling might require manual extraction or cleaning of the data.

4. Identification of author. Identify the author of each code contribution. Depending on

the source code repository used, authors might only be identified by pseudonym strings

or other identifiers like email addresses.

5. Mapping of authors to org. unit. Map the authors of a code contribution to their org.

unit.

6. Mapping of IS projects to org. units. Map the IS projects to the org. units responsible for

them. For some IS projects, it might not be possible to allocate an org. unit.

The activities do not need to be executed in the given order. For example one could decide to

identify authors (activity 4) and subsequently extract organizational data (activity 3) only for

active authors’ and IS projects’.

When measuring the patch-flow incrementally, the measurement costs are reduced signifi-

cantly after the first increment because a large number org. units and authors are already identi-

fied. Ideally, all activities are automated to reduce measurement costs and risk of human errors

during measurement.

3.2.5 Relationship to Classification

This section discusses how the patch-flow method can be applied to the different classes of IS

projects and programs introduced in chapter 2.

IS programs. None of the discussed dimensions on which IS programs differ from one an-

other (degree of self-organization, prevalence, internal economics) have an immediate impact

on the six steps for patch-flowmeasurement presented above. The patch-flow in the context of

an IS program can be measured independently of its class along all three discussed dimensions.

48

IS projects. The objective of an IS project is irrelevant for performing the six steps of the

patch-flowmeasurementmethods. Patch-flowcanbemeasured for exploration-oriented, service-

oriented, and utility-oriented IS projects.

However, the governance dimension is relevant for patch-flow measurement: Step 6 of the

patch-flowmeasurement method is to map each IS projects to the org. units that is responsible

for it.

In chapter 2, we established the IS projects can be governed by one org. unit, multiple org.

units, or all org. units of an organization. Typically, this translates into one, multiple, or all org.

units considering themselves responsible for the IS projects.

How can the patch-flow be measured for IS projects that are owned by multiple or all org.

units of an organization if the patch-flowmethod requires each IS project to bemapped to one

responsible org. unit? In such scenarios, multiple strategies allow to still assign a responsible

org. unit and thus measure the patch-flow:

1. Assign IS project to virtual org. unit. One strategy is to assign the IS project to a virtual

IS org. unit that does not exist in the real organizational structure. As a consequence,

all code contributions to the IS project, will be considered patch-flow into the virtual IS

org. unit. Potentially, this org. unit can host multiple project.

2. Assign IS project to org. unit that contributes most. Another strategy is to still assign the IS

project to one and only on org. unit. Researchers and practitioners can define arbitrary

criteria on how to perform suchmapping. A sensible approach is to assign the IS project

to the org. unit that performed themajority of code contributions in the considered time

interval.

3. Assign IS project to multiple org. units. If required, one can consider adapting the patch-

flowmethod (particularly step 6) and the patch-flowdatamodel (see section 3.2.3) to deal

with an n : mmapping between IS projects and org. units. One would then only inter-

pret code contributions as patch-flow if they are not by one of the org. units responsible

for the IS project.

Strategy (1) is easy to implement. However, it can also lead to wrong interpretations of the

collected data: If only one IS project contributes to an IS project and this project is assigned to

49

the virtual org. unit, an individual looking at the patch-flowmight wrongly assume that said IS

project attracts a large number outside contributions. Strategy (2) mitigates this problem and

does not lead to an over-representation of patch-flow in an organization. Strategy (3) in itself

can lead to wrong interpretations too because the collaboration between the multiple respon-

sible org. units is not included in patch-flow (despite it being an instance of IS collaboration).

Which strategy to choose depends on the specific research question or analysis objective at hand.

3.3 Evaluation Approach

We evaluated the patch-flow measurement method by applying it in an industry case study

following Yin (2013). Our case study is a single-case case study (Yin 2013) because we studied

one organizations with one isolated context and a hollistic case study (Yin 2013) because we did

not consider multiple units of analysis.

We evaluate three dimensions of our patch-flow measurement method:

1. We evaluate the relevance of the patch-flow phenomenon and measurement method in

the context of the case study’s findings.

2. We evaluate the method’s viabilitywithin the context of the case study organization.

3. We demonstrate the usefulness of the patch-flow data and patch-flow graphs to repre-

sent IS collaboration within an organization by analyzing the measured patch-flow and

discussing it in-depth in the context of the case organization.

3.3.1 Case Selection

We searched for a software developing organization with established development processes,

a large number of developers, and existing IS collaboration. From our professional network,

we identified an organization fulfilling these requirements. The organization brought us in as

consultants and, by doing so, partially financed this research. Upon request of our partners in

the case organization, we do not disclose the real name of the organization*.

*The organization is also part of the multiple-case case study presented in section 5. There we refer to the
organization as industry org.

50

The studied organization is a multi-industry company with significantly more than 10,000

developers. It operates internationally but the majority of development work is performed

within one country. Most dominantly, it uses (traditional) plan-driven development processes.

The company is structured intomultiple segments. Withinone segment,we identified 18 test

infrastructure components that are set up as IS projects. The source code of these components

is open for all developers within the organizations to read and contribute to. We measure the

patch-flow regarding these 18 IS projects.

3.3.2 Data Gathering

Weemployed twodata gatheringmechanisms: Weapplied thepatch-flowmeasurementmethod

for the 18 identified test infrastructure IS projects. In parallel, we gathered qualitative data to

broaden our understanding of the case organization and interpret the measured patch-flow

data.

Iterative Gathering of Qualitative Insights

We performed three unstructured interviews with the engineering manager responsible for the

test infrastructure development. Towards the end of our case study inquiry, we performed an

extensive workshop with more than 10 employees in development and project management

roles within the studied organization. Table 3.1 presents details about the interviews and work-

shop. We reference each interview and workshop throughout this chapter using its ID.

In interviews I1 and I2, we inquired about what how to measure and interpret base data

for the patch-flow measurement. In interview I3 and workshop W1, we presented different

visualizations of the patch-flow data, asked for the employees’ interpretations, presented our

interpretations, and collected feedback regarding our interpretations.

Application of Patch-Flow Measurement Method

We followed the patch-flow measurement method discussed in the previous section.

The studied organization stores the source code of the 18 identified IS projects in aMicrosoft

Team Foundation Server (TFS) code repository. With the help of an on-site engineer, we uti-

lized a TFS export script proprietary to the studied organization to extract the code contribu-

tions from the repository (activity 1 from section 3.2.4). We considered code contributions

51

Table 3.1: Gathered qualitative data

ID Type Participants Topics

I1 Interview Eng. manager test infrastructure IS collaboration, organizational struc-
ture

I2 Interview Eng. manager test infrastructure Organizational structure

I3 Interview Eng. manager test infrastructure Interpretation of visualizations, feed-
back

W1 Workshop Employees in multiple roles Interpretation of visualizations, feed-
back

between April 1st, 2015 and June 30th, 2016 (boundaries included). Code for each IS project

is located in a designated sub-directory of the repository. We utilized the directory paths to

determine for each code contribution the receiving IS project (activity 2).

Organizational data sources like theorganization’sLDAPdirectorydidnotprovide adetailed

descriptionof the organizational structure. While theywere containing thehigh-level org. units

of eachdeveloper (i.e. business units), they didnot contain the lower level org. units (i.e. project

teams). An engineering manager responsible for the test infrastructure development manually

assembled information on the organizational structure into amachine readable format (activity

3). The studied organization is amatrix organization. Employees report to their disciplinary su-

perior (disciplinary organization) and at the same time are allocated to a project team (project

organization). We use the project organization for patch-flow measurement because it repre-

sents everyday work routine. We consulted with employees of the organization who expressed

that the disciplinary organization had little impact on their everyday work routine but merely

represented where and how an individual was hired (interview I1, I2). In addition, software

artifacts are owned by org. units of the project organization.

Due to privacy concerns, we did not get access to the employee database. An employee of the

studied organizationmanually searched the identifiers of each code contribution author (activ-

ity 4), mapped them to their org. unit (activity 5), and using an internal database assigned the

owning org. unit (activity 6). Like Guzzi et al. (2012), we observed that the employee database

contained no historical data. As a consequence, we could not identify the author of every code

contribution.

52

We excluded code contributions from analysis where we could not identify the author of the

change (116 code contributions), the org. unit of the author (14 code contributions), or an IS

project receiving the contribution (827 code contributions). In addition, we considered only

code contributionswith actual changes to the code: We excluded changes inducedby repository

management tasks like branching ormerging. The data gathering resulted in 2194 not-excluded

code contributions.

3.4 Evaluation Results

We found significant patch-flow between the org. units of the studied organization.

3.4.1 Organizational Structure

Figure 3.4 displays an excerpt of the organizational structure of the studied organization. The

nodes (circles) represent org. units. The edges (lines) indicate child-parent relationships be-

tween org. units. The nodes are annotated with letters that are used to construct org. unit

identifiers (if a node is annotated with b and its parent node with a, then the identifier is ab).

The excerpt only contains org. units that took part in IS collaboration by contributing patches

to or providing an IS project.

The organizational hierarchy is at maximum six levels deep. The studied organization has a

basic model of the structure defining a type for org. units on each level (interview I2). Using

this type information, we adjusted the level for ab, baba, and their descendants. We assigned

each organizational level (org. level) one color that we use to identify the level throughout this

chapter.

We refer to the most coarse-grained org. units as segments (level 1). In the studied organiza-

tion, segments are essentially companies within the company. They offer independent services

and product portfolios, and cater to different markets (interview I1, I2). The segments have

more than 10,000 employees each.

Segments are composed of business units (level 2). A business unit encapsulates one specific

product domainwithin themarket of its segment. Org. units on level 5 each develop a different

product or a small set of tightly related products. Teams (level 6) are the most fine-grained org.

units and typically consist of 5 to 15 developers. Each teamhas a specific technical task regarding

53

Figure3.4:O
rganizationalstructureincludingallorganizationalunitsarticipatingin

innersourcecollaboration

IS
 P

rojects

L
evel 4

L
evel 2

B
usiness U

nits

L
evel 5

L
evel 3

L
evel 1

Segm
ents

a

b

a

b

a

ba

a

a

c

b

aaaaa tb,tc 2

aaaab tb

aaaca tb-td 3

aaada ta-te 5

aabab tb-td 3

aabaa ta

aabac ta

aabad ta

aacaa ta

abaa tb

abab ta

baba ta,tb 2

abaa ta

b

c

a

a

a

b

c

a

aaaaa tap1,p2 2 a

a

aaaab tap3 b

aaaba tb,tc 2

aaaba tap4 a

aaabb tb,tc 2

aaabb tap5,p6 2

aaabc tb

aaabc tap7 c

aaaca tap8 a

aaadb tb

aaadb tap9 b

d

aabaab tap10-p13 4

b

aabad tb

p14,p15

2 d

aacab tb

p16,p17 2 a

p18 a

b

54

Figure 3.5: Patch-flow graph showing patch-flow between the level 4 organizational units

Level 1 Level 3 Level 4

a a ba a a a a c b a b

a a a a a a a b a a a c a a a d a a c a b a b aa a b a

one part of a product. Figure 3.4 displays each team with its full identifier consisting of the

parent org. unit (e.g. aaaaa) and a team identifier (ti, with index i of a, b, c, ...).

Eleven teams own one or more IS projects (gray boxes in figure 3.4). All IS projects are pro-

vided by teams in segment a. Each level 4 descendant of segment a provides an IS project.

In the studied organization, all IS projects and developers belong to a team (leaf node). This

is not necessarily the case in every organization. For example in other organizations higher level

org. units could own an IS project or employees assigned to a higher level org. unit could decide

to contribute patches.

3.4.2 Patch-Flow Overview

Figure 3.5 shows the patch-flow aggregated by level 4 org. units as a graph. For comprehen-

sibility, we use a different notation than for the previous patch-flow graphs: The white boxes

represent level 4 org. units. The figure also displays a part of the organizational hierarchy. Level

4 org. units are contained by gray boxes representing level 3 org. units. Gray lines around these

boxes indicate level 2 org. units (business units). Directed edges between the level 4 org. units

represent the patch-flow.

The width of an edge shows its weight (the amount of patches flowing). The edges spin

mathematically positive (counter clock-wise). Both, the color and line-type of an edge indicates

the highest level crossed by the patch-flow. In the studied organization, all patch-flow crossing

55

level 2 also crosses level 1. Consequently, the figure only contains the colors for patch-flowwith

highest level crossed equals 1, 3, and 4.

We measured significant patch-flow regarding the sampled IS projects. In total 820 code

contributions (37.4% of all contributions to the IS projects) constituted patch-flow across a

level 4 boundary or higher.

Seven level 4 org. units contribute or receive patches crossing level 4 and are consequently

included in figure 3.5. Three of them (aaad, aaca, baba) do not receive patches. The org. units

aaad and aaca receive no patches crossing level 4 despite hosting IS projects. The org. unit

baba receives no patches as a consequence of our sampling: We considered only IS projects of

segment a. Consequently, we do not find any patch-flow into org. units of other segments.

Identifying contribution activity

Howmuch an org. unit’s developers contribute to IS projects of other org. units varies. On the

one hand, developers of the org. unit aba contribute no patches to other org. units (indicated

by no edge). Developers of other org. units (for example aaca) contribute only a few patches.

On the other hand, developers of select org. units contribute a significant number of patches to

IS projects in other org. units (aaad contributing 315 patches, aaba contributing 172 patches).

The patch-flow graph is capable of expressing how much an org. unit contributes to other org.

units’ IS projects (sum of the weight of all outgoing edges).

Identifying contribution receival

Org. units receive a varying number of outside patches. Two org. units do not receive patch-

flow despite hosting an IS project within our sample (aaca, aaad). The org. unit aaaa receives

the highest number of patches (606). The patch-flow graph is capable of expressing howmany

patches an org. unit receives from other org. units (sum of the weight of all incoming edges).

Identifying collaboration relationships

An org. unit might collaborate only with select org. units. For example, we observed intense

collaboration between the children org. units of aaa and aab compared to other level three org.

units. Children of aaa contribute 131 patches to aab; children of aab contribute 172 patches

56

Figure 3.6: Patch-flow relative to all code contributions over time by highest level crossed

to aaa. The patch-flow graph is capable of expressing how intense two org. units collaborate

with one another (sum of edge weights between these two org. units).

3.4.3 Patch-Flow Over Time

In the previous section, we presented a patch-flow graph that was augmented with hierarchi-

cal information regarding the organization. With an increasing amount of involved org. units

or hierarchical depth of the organization, such a graph can quickly become incomprehensible.

However, hierarchical informationmust not be neglected: Apatch-flowbetween two low-level

org. units (e.g. teams) can have a different meaning than a patch-flow between two top level

org. units (e.g. segments): For example, there might be more and harder challenges to over-

come establishing IS collaboration among large segments than among teams within the same

segment.

Figure 3.6 provides an alternative representation of the patch-flow considering the organi-

zational hierarchy. The x-axis presents the time. The y-axis displays the patch-flow relative to

the total amount of code contributions to the IS projects per month. The color and line type

of each line indicates the highest level crossed by the patches. For example, the red line shows

the percentage of patches flowing between level 6 org. units (teams). The yellow line shows the

percentage of patches flowing between level 5 org. units.

57

We observe intense IS collaboration (significant patch-flow) across level 6 to level 4 of the

organization:

• 47.9% of all code contributions to the IS projects in ourmeasurement period flow across

level 6 (teams)

• 42.4% across level 5

• 37.4% across level 4

There is less patch-flow among level 3 org. units:

• 18.5% across level 3

We observe nearly absent collaboration (insignificant patch-flow) among level 2 and 1 org. units:

• 0.4% across level 2 (business units)

• 0.4% across level 1 (segments)

Patch-flow across level 6 to level 4 of the organization is routine with the sampled IS projects.

More than half of the contributions to IS projects come from other teams; over a third from

other level 4 org. units. There is less patch-flow crossing lower level boundaries. Business units

and segments do not significantly collaborate with one another. Despite the openness brought

by IS practices they can still be considered so called “silos” (org. units that do not collaborate).

Identifying silo boundaries

A visualization of the patch-flow crossing different org. levels as in figure 3.6 is capable to ex-

press on what org. levels silos have formed and across which levels how much IS collaboration

happens.

3.4.4 Patch-Flow into IS Projects

Figure 3.7 shows the total number of code contributions received by an IS project. The y-axis

lists the IS projects. Each bar along the y-axis indicates the number of received code contribu-

tions. The color and pattern of the stacked bars indicate the highest level crossed by the patches.

58

Figure 3.7: Absolute number of code contributions received by inner source project

Figure 3.8: Ratio of patches to all code contributions by inner source project

59

The black striped bar indicates contributions that do not constitute patch-flow (contributions

by the team running the IS project).

The IS projects receive a varying number of code contributions. Two IS projects received no

code contributions in our measurement period (p9, p18). Seven projects receive code contribu-

tions but less than twenty (p2, p6, p10, p12, p13, p15, p16). We consider these IS projects inactive.

Four projects (p1, p3, p8, p11) receive more than 200 code contributions.

Figure 3.8 displays only the projectswe consider active. The y-axis is ordered by total amount

of received code contributions. In contrast to figure 3.7, the bars along the x-axis show the

percentage of received patches.

All active IS projects receive patch-flow. However, they receive a varying portion of patch-

flow. Project p17 receives the smallest ratio of outside patches (4.2%) and project p3 the largest

(61.5%). The IS projects receive patch-flow crossing different levels. While p17 received only

patches crossing level 6 (other team), the majority of teams receives a mix of contributions

crossing level 6 to 3. Only two projects (p11, p14) receive patches that crossed a level 1 (other

segment).

Indicating different reach of IS projects

The measured patch-flow indicates that IS projects acquire different reach within the organiza-

tion with some receiving patches only from neighboring teams and others attracting contribu-

tions even from other segments.

We consider project p1 an outlier because it received 100% patch-flow. The team responsible

for the IS project did not perform any code contributions. In total, eleven level 6 org. units

(teams) from six level 4 org. units contribute to p1. Most patches (90,1%) are contributed by

the team aaadbta. Our contacts at the studied organization confirmed to us that another team

(aaaaata) is the owner of p1 and and coordinates work on this IS project (interview I3, work-

shopW1). However, aaadbta performs a majority of the development and maintenance tasks.

Indicating problems with ownership and component granularity

The significant patch-flow into project p1 (and the tight collaboration it expresses) is not neces-

sarily a positive indicator regarding the studied organization’s development setup. We believe

outliers receiving higher patch-flow can indicate a problem. In the case of project p1 responsible

60

teams are not doing the actual work. We suggest practitioners facing such a situation to recon-

sider who are the owners of the IS project. We believe that inconveniently cut or too coarse

grained components could lead to a high patch-flow.

3.5 Discussion

In this section, we discuss the findings from our case study. We first discuss the evaluation of

our patch-flow measurement method. Subsequently, we discuss how the patch-flow can serve

as an operational definition for IS collaboration.

3.5.1 Evaluation

We evaluate our patch-flow measurement method based on its relevance, viability, and useful-

ness.

Relevance

In the evaluating case study, we found that about half (47.9%) of all code contributions con-

stitute patch-flow between org. units, almost all (42.2%) being between org. units working on

different products. The significant patch-flow measured in the studied organization indicates

high relevance of the patch-flow phenomenon and hence themethod presented in this chapter.

Viability

To evaluate its viability, we applied the patch-flow measurement method in an industry case

study with a software developing multi-industry company. Following the measurement activ-

ities, we populated the discussed patch-flow data structures. Patch-flow measurement using

our method is feasible; the method was applicable to the case study organization.

However, we observed pitfalls practitioners and researchers should be aware of when mea-

suring the patch-flow:

First, the organizational databases stored only incomplete records of the organizational struc-

ture. We had to manually collect data regarding the organizational structure. We recommend

individuals applying the patch-flow measurement method, to carefully search for systems that

61

might contain data on the organizational structure and to rely on costly manual collection of

data only as a last resort.

Second, every IS project at the studied organization has a dedicated team that is responsible

for it. Which team is determined as owner of an IS project is crucial for themeasuredpatch-flow.

Individuals faced with a project receiving only outside contributions (like p1 in section 3.4.4)

need to carefully re-evaluate who owns this project. In chapter 2, we discussed that with evolv-

ing IS initiatives, some IS projectsmight be ownedbymany or even all teams of an organization.

In such cases, researchers need to find operational definitions of IS project ownership that fit

the context of their study. For example IS projects owned by more than one team can be mod-

eled as belonging to the owners’ LCA org. unit.

Third, developers and IS projects are not necessarily assigned to leaf nodes in the organiza-

tional hierarchy. Where this is not the case, one should carefully refer to the definitions given in

section 3.2.3: A code contribution from an org. unit to its descendant or ancestor is not patch-

flow (because its is not possible that both org. units have a level n < nlca with nlca being the

level of their LCA).

Usefulness

Three observations from the case study are relevant to evaluate the usefulness of patch-flow

method and its outcomes for practitioners:

First, the case organization invested own resources to support our patch-flow measurement

(see section 4.2). This indicates to us, that our contact persons in the organization, expected

the results to be useful to them even before measurement started. Second, during workshop

W1, the participants used the patch-flow as a base for discussion of their collaboration practices.

Participants saw the amount of outside contributions to IS projects and the diversity of con-

tributing teams, as an argument to strengthen the role of committers and staff their active IS

projects with more than one committer. That our visualizations led to the discussion of con-

crete actions, indicates to us, that the they are useful to practitioners. Third, during interview

I3 andworkshopW1, individual participants inquired about specific additional aggregations of

the patch-flow data. This indicates to us, that patch-flow visualizations can deliver an overview

of IS collaboration, but that practitioners can use them as a starting point to define additional

62

metrics and visualizations (using the patch-flow data) regarding specific collaboration goals or

information needs of their organization.

We believe that the insights delivered by the visualizations in section 5 are useful to both prac-

titioners and researchers: The patch-flow graph enriched with additional hierarchical informa-

tion, allows to identify hot spots with tight IS collaboration, and org. units not participating in

IS collaboration. In addition to the patch-flow graph, patch-flow data can show what org. lev-

els are typically crossed by patches, which IS project is developed how actively, and fromwhere

each IS project attracts patches.

3.5.2 Operational Inner Source Definition

On the one hand, some organizations run IS projects without calling them IS projects or even

without people being aware that they are performing IS collaboration. For researchers, this can

lead to a struggle in establishing construct validity regardingwhat they claim to be (or not be) IS

projects or instances of IS collaborationor IS in general. On the other hand, someorganizations

might use the term IS project despite a component receiving no or insignificant contributions

(like the inactive IS projects in section 3.4.4). We believe that the patch-flow can be used to

establish an operational definition of IS collaboration: IS collaboration is collaboration across

organizational boundaries such as project or org. unit boundaries within a company. Conse-

quently, where there is a flow of patches (or other contributions), there is IS collaboration.

3.6 Trustworthiness

We evaluate the trustworthiness of our results using the quality criteria credibility, dependabil-

ity, confirmability and transferability (Guba 1981). These quality criteria for naturalistic re-

search can be applied to evaluate case study inquiries in general (Guba 1981), case studies in the

context of software engineering (Cruzes and Dyba 2011), and have been applied to discuss the

trustworthiness of case studies that evaluate theories (Stol et al. 2014). Our case study follows

a naturalistic research paradigm as we evaluate the patch-flow measurement method in a real

world context. Consequently, the presented trustworthiness criteria are a better fit to evaluate

our results than rationalistic criteria (external validity, internal validity, ...) typically used in

studies that mine software repositories.

63

3.6.1 Credibility

Credibility is the degree to whichwe can establish confidence in the truth of our findings in the

context of the inquiry (Guba 1981). For ensuring credibility, we applied two techniques:

We performed intense peer debriefing (Guba 1981): We intensively discussed this work and

gathered feedback from two colleagues within our research group and in an informal setting

with external researchers andpractitioners. Weperformed awriter’sworkshop (Hillside-Group

2010) regarding an earlier draft of the research article that is the foundation of this chapter with

three researchers.

We performed extensive member checks (Guba 1981): As described in section 3.3.2, we itera-

tively performed unstructured interviews and a workshop to support our interpretation of the

patch-flowdata. During interview I3 andworkshopW1, we reflected our findings and interpre-

tations to employees of the studied organizations to discuss our findings and receive feedback

which we incorporated into the research article that is the foundation of this chapter.

3.6.2 Dependability

Dependability is the degree of stability of the findings and traceability from collected data to

the findings. We established dependability by providing an audit trail (Guba 1981) containing

a log of all (unmodified) data with information on how it was received or measured, when,

and by whom. It contains notes for all interviews and workshops and a journal of the analysis

process.

3.6.3 Confirmability

Confirmability is the degree to which we are neutral towards the inquiry and might bias the

findings (Guba 1981). As we developed and presented the patch-flow measurement method,

we are at risk to overstate the relevance, viability, and usefulness of our method. We addressed

this risk using the tactics described in section 3.6.1 regarding credibility.

3.6.4 Transferability

Transferability is the degree to which findings of our inquiry hold validity in other contexts

(Guba 1981). For our evaluating case study, we selected an established organization that is run-

64

ning IS projects. The setup of our study does not allow us to draw immediate conclusions on

whether our patch-flowmeasurementmethod is applicable and useful in other contexts. How-

ever, we did not find indication that the patch-flow measurement method cannot be applied

in other established organizations using IS.

3.7 Conclusion

In this chapter, we presented the patch-flow measurement method – the first method to mea-

sure IS collaboration. It measures flow of code contributions within an organization.

We evaluated the patch-flow measurement method using case study research. In the case

study organization, we found significant patch-flow. This indicates high relevance of the patch-

flow phenomenon and justifies the presented method research. We evaluated the viability of

the patch-flow measurement method. We found our method viable to measure the required

patch-flow data. We demonstrate the usefulness of the patch-flow data and graphs and found

that they are capable to express IS collaboration in the studied multi-industry organization.

We believe our method is of interest to researchers and practitioners seeking to understand

IS collaboration within an organization.

65

4
Patch-Flow Crawler:

A Tool for Measuring Patch-Flow

Theprevious chapter presented thepatch-flowmeasurementmethod and found it tobe a viable

and useful approach tomeasure the inner source (IS) collaboration within an organization. To

use the patch-flow method, researchers need to populate specific data structures (patch-flow

graphs and organizational structures as presented in chapter 3) with data from organizations’

source codemanagement (SCM) systems and other organizational databases. This can amount

to data records on thousands of code contributions authored by thousands of employees from

hundreds of different teams. It is difficult (or even impossible) for a researcher to manually

collect such data – let alone verify its correctness.

In this chapter, we present the patch-flow crawler – a software tool that implements the

patch-flow measurement method. The patch-flow crawler itself is not a research result but an

engineering artifact resulting from this thesis. It supports researchers and practitioners in mea-

suring the patch-flow at a software organization. It collects patch-flowdata fromorganizational

data sources such as organizations’ source code repositories, software forges, and organizational

directories. The software tool is implemented in Java.

In detail, this chapter contributes the following:

67

• The presentation of a the patch-flow crawler (our tool for measuring patch-flow), in-

cluding ...

– a discussion of its requirements from a researcher’s perspective

– a discussion of its software architecture, design, and implementation

• An evaluation of the fulfillment of the identified requirements

The remainder of this chapter is structured as follows: Section 4.1 defines the requirements

towards the patch-flow crawler focusing on the perspective of researchers using the tool. The

subsequent sections discuss the tool’s software architecture (section 4.2) aswell as design and im-

plementation details (section 4.3). Section 4.4 evaluates to which degree the patch-flow crawler

satisfies the defined requirements. Section 4.5 closes the chapter with our conclusions.

4.1 Requirements

For collecting and analyzing the requirements towards our patch-flow crawler, we did not fol-

low a specific development process or paradigm. Rather, we synthesized the requirements from

the patch-flow method (presented in chapter 3), informal discussions with engineers at three

organizations (the three case organizations from chapter 5), and our own industry and IS expe-

riences.

We describe our functional and non-functional requirements using two dimensions:

• Capability: Describing the functionality or non-functional constraint the software tool

is required to deliver (“What is the tool supposed to do?”)

• Motivation: Describing thebenefit achievedby the fulfillmentof the requirement (“Why

is the tool supposed to do that?”)

This format is inspired by the Connexra format for user stories (Lucassen et al. 2016). A user

story is a one-sentence requirement documentation with the following format: “As a [role],

I want [capability of software], so that [received benefit]”. User stories are used as part of

eXtremeProgramming’s planning game (aworkshop style approach to effort estimation) (Beck

1999).

68

In this chapter, we focus on requirements towards the patch-flow crawler by researchers and

do not consider stakeholders filling other roles (potentially) interested in the software tool. Be-

cause of the small number of requirements, we do not qualify them further by distinguishing

requirements that should, need, or have to be fulfilled. We only consider requirements that

must be fulfilled.

4.1.1 Overview

Figure 4.1 summarizes our requirements as a hierarchy. The root of the hierarchy is our primary

requirement to extract and persist patch-flow data from organizational data sources. The leaf

nodes are the fine-grained requirementswhich are further grouped into groups of requirements

that are semantically close to one another. In total we identified nine functional requirement

(F1-F9) and six non-functional requirements (NF1-NF6).

The functional requirements closely resemble the steps of thepatch-flowmeasurementmethod

presented in chapter 3. However, the patch-flow crawler does not support its users in automati-

cally identifying the organizational unit (org. unit) that is responsible for an IS project (activity

6 of the patch-flow measurement method). We expect researchers need to define their own

operational definition of who owns an IS project depending on their research questions or ob-

jectives.

Multiple systems can serve as a data source for extracting patch-flow (or partial patch-flow

data). The patch-flow crawler must be capable to extract relevant data from the following sys-

tems:

• GitHub Enterprise &Gitlab are both software forges (Riehle et al. 2009) that allow indi-

viduals to host IS projects. We consider these products, because both have a high preva-

lence with organizations using IS.

• Team Foundation Server (TFS) is a development tool suie developed by Microsoft. It

includes an SCM system. We consider this product, because we found it to be used by

multiple organizations (developing hardware and software products) in our professional

network including two of those studied as part of a multiple-case case study in chapter 5.

• lightweight directory access protocol (LDAP) services are used to manage and access direc-

tories of an organization’s employees and their place within the organizational structure.

69

Figure4.1:H
ierarchyofrequirem

entstow
ardsthepatch-flow

craw
ler

E
xtract &

 persist patch-flow
 data

from
 organizational data sources

E
xtract &

 persist IS
 projects and repositories from

 a
G

itH
ub E

nterprise instance

F1

E
xtract &

 persist IS
 projects and repositories from

 a
G

itlab instance

F2

A
llow

 m
anual definition of know

n IS
 projects and

repositories

F3

P
repare to extract IS

 projects from
 additional

sources

NF1

E
xtract &

 persist code contribution m
eta data from

know

n G
it repositories

F4

E
xtract &

 persist code contribution m
eta data from

know

n T
F

S
 repositories

F5

P
repare to extract code contribution m

eta data from

additional sources

NF2

F
or persisted code contributions, identify receiving

IS
 projects based on touched files’ locations

F6

Identify &
 persist authors, com

m
itters of code

contributions by em
ail address

F7

P
repare to identify authors, com

m
itters of code

contributions by other m
eans

NF3

Identify &
 persist disciplinary org. units of authors,
com

m
itters from

 L
D

A
P service

F8

P
repare to identify org. units of authors, com

m
itters

in additional dim
ensions

NF4

P
repare to identify org. units of authors, com

m
itters

from
 additional data sources

NF5

E
nable increm

ental craw
ling of repositories

F9

E
nsure data integrity after a crash during craw

ling

NF6

Identify &
 persist IS

 projects

GROUP

E
xtract code contribution

m
eta data

GROUP

F
or persisted code

contributions, identify
receiving IS

 projects

GROUP

Identify &
 persist authors,

com
m

itters of code
contributions

GROUP

Identify &
 persist org. units

of authors, com
m

itters

GROUP

E
nable increm

ental craw
ling

of patch-flow

GROUP

E
xtract &

 persist code
contribution-related data

GROUP

E
xtract organizational data

GROUP

70

We consider such systems as a data source, because they are a de-facto standard in large

organizations.

Not all possible data sources for crawling patch-flow, can be known at the initial design time

of the patch-flow crawler. Other data sources might become relevant to researchers seeking to

measure patch-flow. As a consequence, the crawler has to be designed in such a way, that other

data sources can be added without a need to modify existing components of the crawler (NF1,

NF2, NF5). A key goal for designing and implementing the patch-flow crawler is to provide a

tool that works in execution and domain contexts that might be unknown at design time (NF1,

NF2, NF3, NF4, NF5): Researchers need to be enabled to tailor the tool to extract the type of

patch-flow data they need to achieve their specific research objectives.

In the following subsections of this section, we will not discuss each fine-grained require-

ment including its motivation separately due to space constraints. Rather, we will discuss the

six lowest level groups in the requirements hierarchy (identify&persist IS projects, extract code

contribution meta data, ...).

4.1.2 Identify and Persist Inner Source Projects

To crawl meta data on code contributions and thus patch-flow, one must identify which IS

projects are existing and what the coordinates to their source code repositories are. The patch-

flow crawler must be able to extract meta data on all IS projects (including the name and coor-

dinates to the repository) stored in a GitHub Enterprise or Gitlab instance (F1, F2) and persist

this data. Once a repository or IS project is persisted, we consider it a known IS project or

known repository. In case a researcher needs to define manually which projects to include into

the scope (e.g. because a particular samplingmethod is used), the tool has to be capable to allow

manual definition of known IS projects and their repositories using a comma separated values

(CSV) list (F3).

4.1.3 Extract Code Contribution Meta Data

Thepatch-flowcrawler has tobe capable to extractmetadata of code contributions (pseudonym

of author, pseudonym of committer, commit message, commit date, touched files, type of

changes performed) from Git repositories residing in GitHub Enterprise and Gitlab systems

(F4). The crawler has to provide the same capabilities for TFS repositories (F5).

71

These requirements are related to activity 1 of the patch-flow measurement method (extrac-

tion of code contributions).

4.1.4 For Persisted Code Contributions, Identify Receiving Inner Source

Projects

For each of the identified code contributions, a mapping to the receiving IS project must be

performed. The patch-flow crawler has to be capable tomap a code contributions to IS projects

basedon the receiving repository and the files touchedby a code contribution (F6). ForGitHub

Enterprise and Gitlab this is trivial, as we consider repositories and IS projects to be in a 1-to-1

mapping. In TFS instances, multiple IS projects can potentially be hosted in sub directories in

the same repository.

This requirement is related to activity 2 of the patch-flow measurement method (mapping

of code contributions to IS projects).

4.1.5 Identify and Persist Authors, Committers of Code Contributions

Typically, each code contribution carries some information on its author (and committer). For

example, a commit in Git typically has an author pseudonym field with contents in the follow-

ing format: “Jonathan Doe <email@address.org>”. The patch-flow crawler has to be capable

to parse such pseudonym strings and identify authors using their email address (F7). For some

studies such an identification might either not be feasible or not sufficient. It has to be possi-

ble to adapt the patch-flow crawler to use other means to identify authors without modifying

existing components of the tool (NF3).

These requirements are related to activity 4 of the patch-flowmeasurement method (identi-

fication of author).

4.1.6 Identify and Persist Org. Units of Authors, Committers

For the identified authors and committers, the patch-flow crawler must be capable to identify

their org. unit in the disciplinary organization using an LDAP service (F8). Depending on the

research questions and objectives, researchers studying the patch-flow might be interested in

more than the organization’s disciplinary structure. Researchers could be interested in ...

72

• ... in the regional structure of an organization (for example to study IS’s effects on glob-

ally distributed software development).

• ... the legal entity structure of an organization (for example to study IS’s implications on

controlling and taxation).

• ... in the (traditional) project organization (for example to study IS’s effects on project

management).

• ... other formal and informal dimensions of organizational structure.

As a consequence, not only must the patch-flow crawler’s design be prepared to extract orga-

nizational data from additional data sources (NF5) but also for additional dimensions of the

organizational structure not known at initial design time (NF4). These requirements are re-

lated to activities 3 and 5 of the patch-flow measurement method (extraction of organizational

data, mapping of authors to org. units).

4.1.7 Enable Incremental Crawling

Developers canpotentially contributehundred thousandsof code contributions to the ISprojects

of an organization’s IS program. Extracting patch-flow data for such big programs could take

a long time (multiple hours or days) and it might not be possible to crawl it within one run of

the patch-flow crawler.

For example, it happened to us that we – as external researchers – were not given our own

machines with access to the company network but rather relied on shared machines at the or-

ganizations’ campuses where we could get access for blocks of a few hours or days. Due to such

situations, the patch-flow crawler has to be able to perform the crawling incrementally: That

is, if the crawler is interrupted, it needs to be capable to resume from and still consider the data

that had been crawled already (F9). If the patch-flow crawler is interrupted or crashes for any

reason the integrity of already crawled and persisted data must not be affected (NF6).

4.2 Software Architecture

To implement the requirements, we designed and implemented the patch-flow crawler. This

section describes its software architecture.

73

The IEEE standard 1471-2000 defined software architecture as “the fundamental organiza-

tion of a [software] system embodied in its components, their relationships to each other, and

to the environment, and the principles guiding its design and evolution” (as quoted by Reuss-

ner and Hasselbring 2006). Describing, documenting, and discussing software architecture is

a non-trivial undertaking. Prior work has presented multiple frameworks for presenting soft-

ware architectures (Kruchten 1995;Reussner andHasselbring 2006). Reussner andHasselbring

(2006) propose to describe software architecture using three distinct views (or how they call it

“standpoints”):

• The static view describes the decomposition of a system in its elements and their depen-

dencies.

• The dynamic view describes the system’s behavior at run time, including its control flow,

and changes and interactions between the system’s components.

• The deployment view describes how elements of the static view are mapped to specific

infrastructure and hardware units.

The next subsections discuss the patch-flow crawler’s architecture from these three views.

4.2.1 Static View

Figure 4.2 summarizes the high level logical structure of the patch-flow crawler as UML 2 com-

ponent diagram. The colors are used to highlight the different high-level components and carry

no further semantics. The visualized components encapsulate the following responsibilities:

• The component pfcrawler encapsulates the functionality specific to thepatch-flowcrawler.

It contains multiple sub-components:

– The component service encapsulates all functionality for initiating a run of the

patch-flow crawler. It delegates to a *-plugin component to communicate with

patch-flow data sources (like organizational databases or SCM systems) andmakes

use of the commons component’s functionalities to persist the patch-flow data.

– The components rest-service and cli-service provide functionality to use the patch-

flow crawler via a REST API (Fielding 2000) or a command line interface (CLI).

74

Fi
gu

re
4.
2:

Lo
gi
ca

lc
om

po
ne

nt
so

ft
he

pa
tc
h-

flo
w

cr
aw

ler
as

U
M

L
2.
0
co

m
po

ne
nt

di
ag

ra
m

75

– The component sdkprovides a software development kit that other researchers can

use to implement their own plugins defining how to crawl patch-flow in a specific

environment (for example within a specific organization).

• The *-plugin components each contain the functionality for one such plugin. Organi-

zations differ from one another. While one company might use Git to manage their

source code repositories, another might use a tool not known at initial design time of

the patch-flow crawler (see non-functional requirements NF1, NF2, NF5). When crawl-

ing patch-flow at a specific organization, researchers or developers can implement a plu-

gin component enabling them to collect the necessary patch-flow data from the specific

organization’s data sources. The service component orchestrates the lower level func-

tionalities of a *-plugin component hidden behind the Plugin interface. This interface

and its contract will be discussed in section 4.3.3

• The commons component contains functionality that is not specific to the patch-flow

crawler but might also be used by other software programs relying on patch-flow data.

It contains two sub-components:

– The componentmodel contains a domain model allowing to represent an organi-

zation and its patch-flow.

– The component persistence provides functionality to persist patch-flow and orga-

nizational data in a relational database and retrieve it.

The patch-flow crawler cannot run without a plugin because the pfcrawler component con-
sumes the Plugin interface. Thus, one could argue that the patch-flow crawler in itself is not a
tool but a framework for patch-flow crawling. Riehle (2000) defines a framework as follows:

A framework “is a reusable design together with an implementation [...]. The design represents

a model of an application domain or a pertinent aspect thereof, and the implementation defines

how this model can be executed, at least partially. [...] It leaves enough room for customization

to solve a particular problem in the application domain.”

We still consider the patch-flow crawler a complete tool because it comes with a set of default

plugins researchers can use. However, developers extending the patch-flow crawler might very

well consider it a framework.

76

4.2.2 Dynamic View

Every execution of the patch-flow crawler is done as part of a crawl run. A crawl run is the

sequence of all activities performed by the patch-flow crawler to extract patch-flow data for all

considered source code repositories. A crawl run ends if patch-flow extraction for all considered

source code repositories has either succeeded or failed or the crawl run was interrupted. Each

crawl run has a specific state. It can be either ...

• ... initialized (just started or currently running)

• ... crawled (successfully finished)

• ... failed

Incremental Crawling

A code contribution persisted as a commit to a source code repository is considered to be im-

mutable. Its contents or meta data do not change. As a consequence, we can enable incremen-

tal crawling by extracting for each source code repository only the patch-flow data for a defined

time interval. Because this approach is similar to the one presented in Capraro (2013), we will

only briefly discuss it here:

• Initial crawling. When a repository is crawled for the first time, code contributions con-

tributed in the time interval [null, t1) will be extracted (with t1 being the time the first

crawl run was initiated), while null is interpreted as beginning of time. For each reposi-

tory, the last successful crawl run will be persisted (including its t1).

• Incremental crawling. In the subsequent crawl run, code contributions for the time

interval [t1, t2)will be extracted (with t2 being the starting time of the second crawl run).

If a crawl job n started at tn for a repository fails, this repository’s last successful crawl run will

not be changed. In the next crawl runn+1, patch-flowdata for the time interval [tn−1, tn+1)will

be extracted from the repository (if the repository was crawled successfully in crawl run n− 1).

If no crawl run was successful yet (be it the first or multiple failed) for a repository, the a

following crawl run k will attempt to crawl patch-flow data for the time interval [null, tk) for

that repository.

77

Figure 4.3: Deployment of the patch-flow crawler as command line tool as UML 2.0 deploy-
ment diagram

4.2.3 Deployment View

In the default deployment scenario, the crawler is deployed as a standalone application with a

CLI to a researcher’s machine. However, we prepared the crawler for alternative deployment

scenarios.

Deployment as Command Line Tool

Figure 4.3 summarizes a deployment of the patch-flow crawler as aCLI applicationwith aUML

2.0 deployment diagram. The pfcrawler and commons components as well as one patch-flow

crawler plugin are packaged into a Java *-jar file. This file is deployed to a personal computer

from where a researcher can use it to extract patch-flow data.

Deployment as REST Service

We envision that the patch-flow crawler might be used not only by researchers but also as part

of a larger set of software components for extracting IS data, calculatingmetrics, and visualizing

IS collaboration. In such a scenario, it might not be sufficient to manually trigger patch-flow

crawl runs using a CLI. The patch-flow crawler can be configured to be controlled via a simple

78

REST API that can initiate a new crawl run (POST /crawlruns) or retrieve information on the

status of a crawl run (GET /crawlruns/:id).

Deployment on Multiple Devices

With patch-flow crawling potentially taking a long time, we envision that users of the patch-

flow crawler might eventually want to distribute patch-flow crawling across multiple devices.

While the patch-flow crawler is currently not capable to distribute its work on to multiple ma-

chines, we prepared it to allow for such an extension in the future: In section 4.3.2, we will de-

scribe how we encapsulated specific tasks into the CrawlJob class. In future implementations,

such crawl jobs could be distributed to multiple devices.

4.3 Design & Implementation

The last section delivered a coarse-grained top down view on the patch-flow crawler’s software

architecture. This section will discuss selected fine-grained design and implementation details.

4.3.1 Domain Model

For representing patch-flow data, we developed an object-oriented domain model. We need

to model the relationship of code contributions to elements of the organization (for example

authors of code contributions, their org. units, or IS projects receiving code contributions).

Code Contributions and Patch-Flow

Figure 4.4 shows the part of the domain model representing a code contribution and classes it

is associated with as a UML 2 class diagram.

A code contribution (CodeContribution) is composed of multiple file changes (FileChange)

that each represent one file touched by the code contribution. In the context of the patch-flow

crawler, a file change cannot exist without a code contribution. A file change has a change type

(ChangeType) expressing whether the file was modified, created, or deleted as part of the code

contribution.

A code contribution is posted to a repository (Repository). One repository can contain zero,

one, or multiple IS projects (InnerSourceProject). One IS project cannot have more than one

79

Figure 4.4: Code contributions and associated classes as UML 2.0 class diagram

repository. While software forges like GitHub or Gitlab encourage a one-to-one mapping be-

tween IS projects and repositories, other setups can lead tomultiple IS projects being hosted in

one repository.

Each code contribution has zero or one author and zero or one committer (both objects of

the class Person). One author and committer is the default case. However, sometimes it is not

possible to identify an author or committer object (for example when sufficient organizational

data is not available or when repositories have been migrated from one SCM to another).

The concepts and terminologies of our domain model (such as persons, repositories, ...) are

different from the concepts and terminologies in the context of the systems we use as data

sources. Appendix B provides a mapping of terms in our domain model to terms in GitHub,

Gitlab, and TFS.

Accountability and Typed Relationship Patterns

In addition to modeling code contributions and the concepts they are directly associated with,

we must model the elements and structure of the organizations whose patch-flow is measured.

To model organizational structures, we rely on the typed relationship pattern (Fowler 1997b).

80

Figure 4.5: Typed relationship pattern as UML 2.0 class diagram

Figure 4.6: Abbreviated notation for typed relationship pattern as UML 2.0 class diagram

A simple approach to modeling organizations is to model them as trees composed of disci-

plinary org. units, for example using the composite design pattern proposed by Gamma et al.

(1994). However, this approach is not sufficient because we need to be capable to model mul-

tiple dimensions of the organizational structure like the disciplinary, regional, and legal-entity

dimension (see non-functional requirement NF4).

This canbe achievedusing the typed relationshipdesignpattern introducedbyFowler (1997b).

Figure 4.5 gives Fowler’s initial example of the typed relationship design pattern as UML 2.0

class diagram. In the example, a person (Person) is employed (Employment) at a company (Com-

pany). To further qualify the employment relationship, the type of employment (Employment-

Type) is associated with the employment. In this thesis, we use UML 2.0 qualified associations

to express typed relationships. Figure 4.6 shows Fowler’s example using this notation. The use

of typed relationship formodeling organizational or reporting structures results in the account-

ability design pattern (Fowler 1997a).

Organizational Structure

The domainmodel of the patch-flow crawlermakes use of the typed relationship design pattern

bymodeling the relationships between org. units and persons, IS projects, and other org. units

as typed relationships. Each such relationship holds validity in one defined organizational di-

mension (OrgDimension) it is associated with. An organizational dimension is the dimension

along which an organization is decomposed. For example one can decompose an organization

81

Figure 4.7: Organizational units and associated classes as UML 2.0 class diagram

according to its disciplinary or functional structure, its legal or regional entities. Figure 4.7

summarizes the organizational model as a UML 2.0 class diagram.

4.3.2 Crawl Engine

Onecentral class of thepatch-flowcrawler’s service component is the crawl engine (CrawlEngine).

It orchestrates all tasks necessary to perform the patch-flow crawling. Figure 4.8 summarizes

this class (highlighted in red color) and other selected classes it is associated with:

• CrawlJobFactory and CrawlJob. For each repository (Repository) to crawl, the crawl en-

gine uses the crawl job factory (CrawlJobFactory) to instantiate one crawl job (CrawlJob).

The crawl engine schedules and monitors the crawl jobs. Crawl jobs perform the re-

source intense work of communicating with the data sources and transforming the ex-

tracted data into the required format. Encapsulating this functionality into its own class

allows future researchers and developers to implement alternative deployment scenarios

(see section 4.2.3)

• CrawlRunController. The crawl engine delegates to the crawl run controller (Crawl-

RunController) all activities necessary to manage the state of the current crawl run.

• PluginProvider and Plugin. A plugin provider (PluginProvider) provides to the crawl

engine an instance of a class implementing the Plugin interface. This allows researchers

and developers to customize a crawl run.

82

Figure 4.8: Crawl engine and associated classes as UML 2.0 class diagram

4.3.3 Plugin Interface

Researchers using thepatch-flow crawler, can customizewhich tasks are executedduring a crawl

run by implementing the patch-flow crawler’s Plugin interface. The following listing shows the

Plugin interface as Java source code:

public interface Plugin {

List<CodeContributionProcessor> getCodeContributionProcessors();

ScmAdapter getScmAdapter(Repository _repository);

List<PreStep> getPreSteps();

List<PostStep> getPostSteps();

}

By implementing themethods of the Plugin interface, researchers and developers decide which

tasks should be performed as part of a crawl run.

Pre- and Post-Steps

The plugin provides to the crawl engine a (sorted) list of pre-steps and post-steps. Pre-steps (im-

plementing the PreStep interface) encapsulate tasks that need to be performed before the crawl

jobs can commence. For example, one could use a pre-step to identify whether new IS projects

83

or repositories were added to a software forge that need to be considered when crawling. After

all crawl jobs finished, the crawl engine executes a sequence of post-steps (implementing the

PostStep interface). The sequence of steps is determined by their position in the the list (imple-

menting Java’s List<> interface). The post-steps encapsulate tasks that need to be performed

before the crawl run ends, for example cleanup tasks or anonymization of extracted data.

Source Code Management Adapters

To extract code contributions, the crawl engine delegates to SCM adapters (implementing the

ScmAdapter interface). Using the getScmAdapter()method of the plugin, the crawl engine can

get the needed SCM adapter for each repository it seeks to instantiate a crawl job for. The

following source code listing shows the ScmAdapter interface:

public interface ScmAdapter {

// Dropped comments from this listing

public Iterator<CodeContribution> fetch(

Repository _repository,

Date _start,

Date _end

);

}

The fetch()method of each SCM adapter guarantees to return an iterator (Gamma et al. 1994)

of code contributions sorted by contribution date. The sorting ensures that if a crawl job is

interrupted the last persisted code contribution and all code contributions before that can still

be used to construct a complete time series of code contributions per repository up until the

contribution time of the last persisted code contribution. Using Java’s iterator interface instead

of Java’s list implementation, allows developers implementing an SCM adapter to optimize the

resource consumption by using lazy loading techniques.

Code Contribution Processors

Each code contribution extracted using SCM adapters is processed by a chain of code contribu-

tion processors (implementing the CodeContributionProcessor interface) objects. Such proces-

sors can for example be used to extract additional information about the code contribution or

its author from an organizational database. Similarly to the

84

The patch-flow crawler’s sdk component provides a set of pre-steps, post-steps, code con-

tribution processors, and SCM adapters. Users can also provide their own implementation

by implementing the respective interfaces (PreStep, PostStep, CodeContributionProcessor, Sc-

mAdapter). The source code of all interface definitions is listed in appendix B.

Example Plugin

Figure 4.9 illustrates a crawl run using an example plugin (the plugin for the automotive orga-

nizationwewill study in chapter 5) as a UML 2.0 communication diagram. The diagram omits

objects that are not necessary for discussing the sequence of events in a crawl run.

Once a user calls the crawl engine’s crawl() method (message 1 in the communication dia-

gram), the crawl engine uses a provided plugin (not pictured) to instantiate the pre-steps, post-

steps, and patch-processors this plugin defines. First a pre-step is executed by calling the exe-

cute() method of an object instantiating theAddInnerSourceProjectsPreStep (message 1.1). The

class encapsulates functionality for identifying IS projects (and their repositories) that were

newly created since the last crawl run and persisting them as known IS projects (and reposi-

tories).

For each known repository, the crawl engine creates one instance of the class CrawlJob. In

this example, three crawl jobs are created and run independent and in parallel (messages 1.2a,

1.2b, 1.2c).

The crawl job extracts data about code contributions from its repository and createsmultiple

instances of theCodeContribution class. Each such instance p (assuming x instances) is processed

with a sequence of (in this example three) code contribution processors:

• The InferPersonByEmailProcessor identifies who contributed a code contribution by ex-

tracting the email address of the author and committer from the code contributionmeta

data (message 1.2a.1).

• The LdapEnrichPersonProcessor connects to an LDAP service to load additional data

on the code contribution’s author and committer for example first name and last name

(message 1.2a.2).

85

Figure4.9:O
bjectcom

m
unication

duringacraw
lrun

asU
M

L
2.0

com
m

unication
diagram

86

• The AddDisciplinaryOrgElementsProcessor again connects to an LDAP service to iden-

tify the code contribution author’s org. unit and this org. unit’s parents in thedisciplinary

organizational tree (message 1.2a.3).

4.4 Evaluation

This section discusses how we evaluated the fulfillment of the identified requirements.

Table 4.1 gives a summary. It lists all requirements and describes how theywere we evaluated

their fulfillment. Ten requirements (F1, F2, F3, F4, F5, F6, F7, F8, F9, NF6) were evaluated by

performing software tests. Typically, this tests were performed as part of a master thesis project

where a student contributed to the development of the patch-flow crawler. Five requirements

(NF1, NF2, NF3, NF4, NF5) were not evaluated by a software test. Rather, we evaluated them

analytically by studying the properties of the software design.

4.4.1 GitHub Enterprise-Specific Requirements

As part of the master thesis project by Plantera (2018), we evaluated the patch-flow crawler’s

capabilities to crawl patch-flow from GitHub Enterprise and implemented GitHub-specific

SCMadapters, code contribution processors, and pre-steps. For evaluation, we extracted patch-

flow data using the API of GitHub.com and a mocked LDAP service. We manually inspected

and checked the extracted data. The API of GitHub.com is largely identical to the API of

GitHub Enterprise. We found that the patch-flow crawler is capable to extract and persist IS

projects from a GitHub Enterprise instance (F1), to extract code contribution meta data from

Git repositories (F4), to identify authors based on email addresses (F7), and to identify and

persist disciplinary org. units of persons using an LDAP service (F8).

4.4.2 Gitlab-Specific Requirements

As part of the master thesis project by Metzig (2019), we evaluated the patch-flow crawler’s

capabilities to crawl patch-flow from a Gitlab forge and implemented Gitlab-specific SCM

adapters, code contribution processors, and pre-steps. For evaluation, we extracted code con-

tribution data from a Gitlab instance hosted and provided by the RRZE – our university’s

central provider of IT infrastructure. We found the crawler to be capable to extract and persist

87

Table 4.1: Overview of requirement evaluation status

Status Requirement

Identify & persist IS projects

✔ tested F1 Extract & persist IS projects and repositories from a GitHub Enter-
prise instance

✔ tested F2 Extract & persist IS projects and repositories from a Gitlab instance

✔ tested F3 Allow manual definition of known IS projects and repositories

✔ eval. analytically NF1 Prepare to extract IS projects from additional sources

Extract code contribution meta data

✔ tested F4 Extract & persist code contribution meta data from known Git
repositories

✔ tested F5 Extract & persist code contribution meta data from known TFS
repositories

✔ eval. analytically NF2 Prepare to extract code contribution meta data from additional
sources

For persisted code contributions, identify receiving IS projects

✔ tested F6 For persisted code contributions, identify receiving IS projects based
on touched files’ locations

Identify & persist authors, committers of code contributions

✔ tested F7 Identify & persist authors, committers of code contributions by
email address

✔ eval. analytically NF3 Prepare to identify authors, committers of code contributions by
other means

Identify & persist org. units of authors, committers

✔ tested F8 Identify & persist disciplinary org. units of authors, committers
from LDAP service

✔ eval. analytically NF4 Prepare to identify org. units of authors, committers in additional
dimensions

✔ eval. analytically NF5 Prepare to identify org. units of authors, committers from additional
data sources

Enable incremental crawling of patch-flow

✔ tested F9 Enable incremental crawling of repositories

✔ tested NF6 Ensure data integrity after a crash during crawling

88

IS projects from a Gitlab instance (F2) and to extract and persist code contribution meta data

from Git repositories (F4).

4.4.3 TFS-Specific Requirements

As part of themaster thesis project byHasler (2017), we evaluated the patch-flow crawler’s capa-

bilities to crawl patch-flow from a TFS instance and implemented a TFS specific SCM adapter.

For evaluation, we used the patch-flow crawler with this SCM adapter, to extract code contri-

bution data from a TFS repository hosted as a software as a service. We found the crawler to

be capable to extract and persist code contribution meta data from TFS repositories (F5). We

were able to manually provide the TFS repositories to the crawler (F3).

4.4.4 Remaining Requirements

All three cited master thesis projects made use of the crawler’s capability to crawl incrementally

(F9) and tested the crawler’s behavior when interrupted. We found that already crawled data’s

integrity remains intact even if the crawler is interrupted unexpectedly (NF6).

For five non-functional requirements (NF1, NF2, NF3, NF4, NF5), we could not perform

an evaluation by testing the patch-flow crawler or its output. Rather, these non-functional

requirements are fulfilled as a consequence of specific design decisions: Using the typed prop-

erty pattern to model relationships between org. units, allows our domain model to express

multiple organizational dimensions defined at run time (NF4). The plugin interface allows

developers to customize the crawler to extract IS projects and coordinates to repositories from

arbitrary sources (NF1), to identify code contributions or their authors by alternative means

(NF2, NF3), or to use arbitrary systems as data sources to identify the org. units of code contri-

bution authors (NF5).

4.5 Conclusion

In this chapter, we presented the patch-flow crawler – a Java tool for crawling patch-flow –

and discussed its requirements, software architecture, design, and implementation. The tool

allows researchers (and others) to automate the patch-flowmeasurement method presented in

chapter 3. The tool can be used to crawl patch-flow from multiple software forges and SCM

89

systems (for example GitHub Enterprise, Gitlab, TFS) as well as organizational data sources

(for example LDAP services). Using a plugin interface, the crawler can be customized to extract

patch-flow data from arbitrary data sources.

90

5
Case Study:

Patch-Flow at Three Large Organizations

The majority of scientific literature presented qualitative results such as case study reports (for

example Dinkelacker et al. (2002); Gurbani et al. (2006); Stol et al. (2014); Riehle et al. (2016))

and taxonomies or qualitative models regarding inner source (IS) (for example Stol et al. (2011,

2014); Gaughan et al. (2007)). There is no study yet quantifying themaginitude of IS collabora-

tion or exploring the relationship between exercised IS practices and resulting IS collaboration.

Learning about the magnitude of IS collaboration is relevant for IS practitioners and re-

searchers because it tells how much IS collaboration is to be expected in organizations. The

magnitude indicates the relevance of research on IS proxied by IS’s possible impact on industry

organizations. Understanding how implemented IS practices affect IS collaboration is of inter-

est to to primarily practitioners. It indicates whether the cost of adopting specific IS practices

is justified because it leads to a different magnitude or properties of IS collaboration.

To this end, this chapter answers the following research questions:

• RQ4: What is the magnitude of IS collaboration in organizations?

• RQ5: How do IS practices affect IS collaboration?

91

To answer these research questions, we performed a multiple-case case study with three soft-

ware developing organizations running five IS programs. We performed qualitative and quan-

titative analyses:

In the qualitative part, we employed multiple data collection methods (resulting in 14 inter-

views, 17 direct observation notes, 15 documents, 10 artifacts) and analyzed the resulting data

using thematic analysis (Braun and Clarke 2006) to learn which IS practices are implemented

in the organizations.

In the quantitative part, we measured and analyzed the patch-flow in the organizations.

Patch-flow is the flow of code contributions across organizational boundaries such as project or

organizational unit (org. unit) boundaries within a company. Patch-flowuses patches (external

code contributions) as a proxy to model collaboration. Analyzing patch-flow tells us who in

an organization contributed howmany code contributions to whose IS projects. We identified

correlations between the observed IS practices and patch-flow and theorize about relationships

between them.

In detail, this chapter contributes the following:

• A multiple-case case study with three software developing organizations, including ...

– a discussion of how IS is implemented in three case organizations

– an in-depth analysis of the case organizations’ patch-flow

• A theory (consisting of four hypotheses) on how IS practices affect IS collaboration

The remainder of this chapter is structured as follows: Section 5.1 gives an overview of prior

work regarding IS and the effect of IS practices on IS collaboration. Section 5.2 introduces our

research methods by discussing our case study design and execution as well as the approach

for measuring patch-flow. The subsequent sections report on our case study results by giving

case descriptions (section 5.3) and presenting our cross-unit of analysis synthesis (section 5.4).

Section 5.5 discusses and interprets the findings of our case study and presents four hypotheses

forming a theory on how IS practices affect IS collaboration. Section 5.6 discusses the trustwor-

thiness of our our study and section 5.7 presents our conclusions.

92

5.1 RelatedWork

In this section, we discuss prior work related to our study. First, we scope our case study from

other case studies performed in an IS context. Second, we discuss related work on quantifying

the magnitude of IS collaboration (RQ4) and, third, on the influence of IS practices on IS

collaboration (RQ5).

5.1.1 Prior Case Studies

Themajority of prior work on IS to date is relying mostly on qualitative data. A variety of case

studies reported on IS efforts and programs organizations including Bosch (Cooper and Stol

2018), DTE Energy (Smith and Garber-Brown 2007), Ericsson (Torkar et al. 2011), Hewlett-

Packard (Dinkelacker et al. 2002; Melian andMähring 2008), IBM (Vitharana et al. 2010), Kit-

ware (Martin and Hoffman 2007), Lucent (Gurbani et al. 2006, 2010), Nokia (Lindman et al.

2008), (Cooper and Stol 2018), Philips (van der Linden et al. 2009), Rolls-Royce (Stol et al.

2014), and SAP (Riehle et al. 2009). None of these studies quantified IS collaboration or ex-

plored the relationship between the observed IS practices and the resulting IS collaboration.

However, some prior work utilized quantitative data as well. Both, Dinkelacker et al. (2002)

and Riehle et al. (2009) used the number of IS projects to quantify the size of an IS program.

Contrary to our work, they did not consider whether the IS projects were receiving any outside

contributions. Gurbani et al. (2006) measured counted all code contributions to an IS project

over time to illustrate the project’s evolution. Contrary to our work, they did not distinguish

between outside contributions (patches) and regular code contributions.

5.1.2 Magnitude of IS Collaboration

Both researchers and practitioners have used simple counting metrics to quantify how active

their IS programs are and how much collaboration are taking place. We discussed their ap-

proaches in detail section 3.1 (discussing prior work related to the patch-flow method). The

approach of our study differs in that we consider the organizational structure of the studied

organizations and the flow of code contributions between its org. units.

93

5.1.3 Influence of IS Practices

Prior work did not explicitly study the scope, extent, or magnitude to which IS practices in-

fluence IS collaboration. However, implicitly many studies present approaches, factors, and

insights with the goal to benefit or increase IS collaboration.

Stol et al. (2014) used prior literature to identify nine key factors that support IS adoption.

Stol and Fitzgerald (2015) presents a tutorial on adopting IS based on these key factors. Our

work is similar to their work in that we also build a theory, seeking to understand what leads to

or enables more IS collaboration. However, our work differs in that we use rich quantitative

data (patch-flow data) to build our theory. Our findings are more fine-grained. We theorize on

the influence of specific practices or sets of practices and consider the magnitude of collabora-

tion (proxied by patch-flow) and the organizational distance of participants in collaboration.

Carroll et al. (2018) examine the impact of adopting IS practices on organizations. They used

qualitative methods to identify tensions arising from using IS practices and propose strategies

to mitigate these tensions. In contrast, we theorize how specific sets of IS practices affect IS

collaboration.

5.2 Research Approach

Weperformed case study research. We identifiedwhich ISpractices the case organizations imple-

mented, measured and analyzed the patch-flow (as a proxy for IS collaboration), identified cor-

relations between employeed IS practices and resulting IS collaboration, and theorized about

their causal relationships.

Case study research is the appropriate researchmethod because we studied a “contemporary

phenomenon [...] within its real world context” (Yin 2013). Different classes of case studies

exist (Yin 2013; Runeson et al. 2012). Our case study is ...

• amultiple-case case study (Yin 2013), because we studied three organizations with an iso-

lated context.

• an embedded case study (Yin 2013), because we consider the organizations’ IS programs

to be units of analysis (two organizations run more than one IS program).

94

• an exploratory case study (Runeson et al. 2012), because we undertake theory building

and present four novell hypotheses.

Our researchprotocolwithmoredetaileddiscussions of our approach is available as appendixC.

In the protocol, we also discuss in more detail why we consider our case study to be primarily

an exploratory case study.

5.2.1 Selecting Cases

We searched for software developing organizations that are ...

• large (in terms of number of employees) because in large organizations the target group

of potentially collaborating developers is bigger and potentially more “silos” (parts of

the organization not collaborating at all) exist.

• established (quantified by the age of the organization) because extensive growth and

changes typically found in young organizations might distort observations and conclu-

sions drawn about IS practices and collaboration.

• large (in terms of revenue) to ensure they are economically relevant.

As a function of their size, all of our case organizations have development locations in multi-

ple countries. However, we searched for organizations with the majority of development in a

single country to minimize effects of globally distributed software development (like cultural

mismatch, language barriers, ...).

We identified three organizations fitting these criteria. All three organizations brought us in

as consultants and, by doing so, partially financed this research. Upon request of our contacts

in the case organizations, we do not disclose the organizations’ names. Instead, we refer to the

organizations by using their primary domain as pseudonym: automotive org., industry org.,

andmedical org.

Table 5.1 summarizes key attributes of each case organization. The selected organizations are

similar in that they all have a large number of employees (> 45, 000), are established organi-

zations, and have globally distributed software development. In each of the organizations, a

majority of employees in the same country.

95

Table5.1:O
verview

ofcaseorganizations

A
utom

otiveO
rg.

Industry
O
rg.

M
edicalO

rg.

D
om

ain
A
utom

otive
supplier

devel-
oping

hardw
are,

softw
are,

and
hardw

are-softw
arecom

-
ponents

M
ulti-industry

organiza-
tion

catering
to

different
dom

ains
including

en-
ergy

system
s

and
factory

autom
ation.

M
edicaltechnology

organi-
zation

developing
devices

for
diagnostic

im
aging

and
therapysupport.

A
nnualR

evenue(2017)
>

40
billion

EU
R

>
60

billion
EU

R
>

10
billion

EU
R

A
geoforganization

>
20

years
>

20
years

>
20

years

N
um

berofem
ployees

>
200

,000
>

300
,000

>
45,000

R
egulation

Selected
productsregulated

Selected
productsregulated

Practicallyallproductsregu-
lated

D
evelopm

entdistribution
G
lobally

distributed,
but

m
ajority

ofdevelopm
entin

sam
ecountry

G
lobally

distributed,
but

m
ajority

ofdevelopm
entin

sam
ecountry

G
lobally

distributed,
but

m
ajorityofdevelopm

enton
sam

ecam
pus

96

However, the organizations differ on some dimensions. Medical org. is smaller (number of

employees, revenue) than theother organizations andpractically all of its products are regulated

by government bodies (like the United States Food and Drug Administration). Industry org.

caters to multiple domains while the other organizations are focused on a single domain.

5.2.2 Identifying IS Practices (Qualitative)

Tounderstand how IS programs are set up in the studied organizations, we collected qualitative

data. Subsequently, we performed a thematic analysis (Braun and Clarke 2006) of the data to

identify collaboration practices. For each identified collaboration practice, we assessedwhether

it is an IS practice or not using the findings of prior literature.

Definitions

We define the following terms:

• A practice is a customary or expected procedure of performing a task or solving a prob-

lem.

• A (software development) collaboration practice is a practice used by an individual or

group to collaborate with other individuals or groups (in the context of a software devel-

opment effort).

• An IS practice is a collaboration practice from an open source (OS) context used for col-

laboration within an organization.

• A non-IS practice is any practice that is not an IS practice.

This thesis is in the field of software engineering. Thus, when talking about collaboration prac-

tices, we will not refer to them as software development collaboration practices because this is

implied in the context.

Data Collection

We collected the qualitative case study data using direct observations, interviews, and retrieval

of preexisting documentation and artifacts used by the organizations. Table 5.2 summarizes

97

Table 5.2: Considered qualitative data items

Automotive Org. Industry Org. Medical Org.

Observations 5 Field notes
(AN1, ...,AN5)

2 Field notes
(IN1, IN2)

8 Field notes
(MN1, ...,MN8),
2 Email threads
(ME1,ME2)

Interviews 4 Semi-struct.
(AI1, ...,AI4)

1 Unstructured
(II1),
6 Semi-structured
(II2, ..., II7)

1 Unstructured
(MI1),
2 Semi-structured
(MI2,MI3)

Documents 9 Process documents
(AD1, ...,AD9)

3 Int. presentations
(ID1, ..., ID3),
1 Internal wiki page
(ID4)

2 Int. presentations
(MD1,MD2)

Artifacts 1 Internal leaflet on IS
(AA1),
9 Screenshots
(AA2, ...,AA10)

the considered qualitative data. In total, we considered 28 data items for automotive org., 13 for

industry org., and 15 for medical org.

Observations. We performed direct observations in all the organizations by observing and

participating in meetings and workshops. We documented the observation by taking manual

field notes. At medical org., we also considered two email threads.

Interviews. We performed unstructured (II1,MI1) and semi-structured (all others) inter-

views. A majority of interviews were not solely focused on collaboration or IS practices, but

on more specific topics (e.g. goals of the organizations IS program, quality assurance). We per-

formed audio recordings and transcriptions for the interviews. Before each recorded interview,

we established informed consent with the interviewees (Singer andVinson 2002). Interviewees

were typically suggested by the organization and involved with IS either as contributors or by

planning or being responsible for an IS program.

For two interviews (II1,MI1), no audio recordingwas done andwe tookmanual notes instead.

When quoting those interviews in this thesis, we paraphrased from our notes. All interviews

98

and field notes were in a language other than English. When quoting the interviews in this

thesis, we translated them to English.

Other data. In addition, we collected documentation from all three organizations. For

automotive org., we collected artifacts (a leaflet and screenshots from their software forge).

Data Analysis

We analyzed the data using a three phase approach.

Phase I) Thematic analysis. We performed a thematic analysis to identify which collab-

oration practices were exercised in the organizations’ IS programs. As suggested by Braun and

Clarke (2006), we followed a five step approach:

• We transcribed and familiarized ourselves with the data (step 1).

• We performed an initial coding (step 2). We labeled statements in the text with so called

codes (short descriptions). We used the software tool MaxQDA and maintained a code

book (Guest et al. 2006) listing definitions for each code.

• We grouped the codes into common themes (step 3). Each resulting theme, represents

one observed practice.

• We reviewed whether the resulting codes fit the labeled segments and whether the codes

and themes do justice to the entire data set (step 4).

• We then redefined and named themes and adapted our code book accordingly (step 5).

We iterated over these steps multiple times.

Phase II) Additional grouping. Our thematic analysis resulted in a total of 14 themes.

We interpreted each theme to be one collaboration practice. Wemanually grouped the practices

into four groups to make them easier to present, comprehend and compare.

Phase III) Assessment. We utilized existing IS literature to assess for each observed collab-

oration practice whether it is suggested by prior research work on IS (and thus an IS practice)

or not mentioned or even discouraged by prior research work (and thus a non-IS practice).

99

5.2.3 Measuring Patch-Flow (Quantitative)

Wemeasured the patch-flow in the case organizations and analyzed itsmagnitude and structure.

Definition of Scope

Before measuring the patch-flow one must decide which IS projects to include in the scope for

measurement. We were interested in all software development efforts where IS collaboration

was suspected. With the help of employees of the studied organization, we identified a total of

five IS programs: one in industry org. (test infrastructure), two in each automotive org. (forge

components, AutoSource) and medical org. (development tools, imaging platform). Each of

the IS programs serves as one unit of analysis for our case study. For each unit of analysis, we

measured the patch-flow for exactly one year. All IS programs were at least three months old

at the first day included in the measurement interval.

Measurement

Wemeasured the patch-flow using the method presented in chapter 3. We applied it as follows:

Step I) Extraction of code contributions. Using the patch-flow crawler (see chap-

ter 4), we extracted the code contributions to IS projects at automotive org. (via the API of

their GitHub forge) and medical org.’s development tools program (via the API of their Mi-

crosoft Team Foundation Server (TFS)). At industry org. and medical org.’s imaging platform,

we utilized export scripts proprietary to each of these organizations.

Step II)Mappingofcodecontributions IS projects. We considered each repository

in the forge to be a separate IS project (automotive org.) or utilized directory paths (all other

organizations) to identify for each code contribution which IS project it was contributed to.

Step III) Extraction of organizational data. Using the patch-flow crawler, we ex-

tracted organizational data from the organizational databases used by the organizations (LDAP

directory for automotive org., a collection of XML files for medical org.). For industry org., we

did not get access to the employee database due to privacy concerns but an on-site engineering

manager extracted and provided a model of the organizational structure to us.

100

Step IV) Identification of the author. We used the unique identifiers and email ad-

dresses of contributors (where available from the code contribution meta data) to identify the

author for each code contribution with the help of the patch-flow crawler (automotive org.,

medical org.) Where such information was not available, we utilized an individuals name or

department code to identify the individual manually with the help of on-site employees (auto-

motive org., medical org.). Due to privacy concerns, an on-site employee performed these tasks

at industry org. using the same process but not the patch-flow crawler.

Step V) Mapping of authors to org. units. Once we had identified the individuals

and their records in the organizational databases (last step), we mapped them to their current

org. units trivially by querying the respective organizational databases.

StepVI)Mappingof IS projectstoorg. units. Due to the large number of IS projects,

we were not able to perform this step manually (e.g. by asking employees of the organizations

which org. units are responsible for each IS project). Instead, wemapped each IS project to the

org. unit whose developers contributed the most code contributions to it.

Exclusion of Data

For automotive org., we identified and excluded from analysis 49 repositories that contained

OS projects imported into the organization’s software forge, 119 repositories that were created

as part of a Git training for employees, and one project in which an employee used the software

forge to store automatically performed backups. In addition, we excluded certain code contri-

butions from analysis. Table 5.3 presents the total number of code contributions excluded per

case with the reason for exclusion.

Normalization of Organizational Data

Researchers can consider multiple dimensions when modeling an organization for patch-flow

measurement, for example the disciplinary (often called “solid line”), functional (often called

“dotted line”), regional, or legal entity organization. In this chapter, we focus on the highest

levels of the disciplinary organization:

101

Table 5.3: Number of excluded code contributions by reason

Reason for exclusion Automotive
Org.

Industry
Org.

Medical
Org.

Branching or merging commits (Excluded at time of measurement)

Author not identified 9736 53 133

Author’s org. not identified 5151 13 259

Receiving IS project not identified 0 709 35

Performed by bot, automated commits (Excluded at time of measurement)

• For automotive org., we consider their top level (divisions) and second level (business

units) org. units.

• For industry org., we consider top level (segments), second level (business units), and

third level org. units.

• For medical org., we consider top level (business areas) and second level (business lines)

org. units.

Organizations differ from one another. As a consequence, we need an approach to establish

comparability between organizations’ org. units. We use the size of an org. unit (measured in

number of total employees) as a base for comparison.

Automotive org. has over 200,000 employees, industry org. over 300,000 employees, and

medical org. over 40,000 employees. The divisions (top level) of automotive org. havemedian

over 45,000 employees; the segments (top level) of industry org. have median over 40,000

employees.

Based on this information, we normalize the levels of the org. units in the tree to put those

org. units (or organizations) with 45,000 employees on the same level. Table 5.4 summarizes

the normalized organizational levels (org. levels) and their corresponding native levels.

Uncovering Relationships Between IS Practices and Patch-Flow

To identify how IS practices affect IS collaboration (proxied by patch-flow), we seek to uncover

and interpret correlations between IS practices and patch-flow observed in each IS program as

well as co-existing patterns in the programs.

102

Table 5.4: Normalized organizational levels

Normalized Level Automotive Org. Industry Org. Medical Org.

Level 1 Top level
(Divisions)

Top level
(Segments)

Level 2 Second level
(Business units)

Second level
(Business units)

Top level
(Business areas)

Level 3 Third level Second level
(Business lines)

Our research setup does not allow us to simply employ statistical correlation coefficients

to identify such correlations: First, with five IS programs, our sample size is significantly too

small to employ typical correlations like Pearson, Kendall, and Spearman correlations (Bonett

and Wright 2000). Second, in case study research such cross-case (or cross-unit of analysis)

syntheses should not rely solely “on numeric tallies” but rather “strongly on argumentative

interpretation” (Yin 2013).

As a consequence, we provided an argumentative interpretation of our case study by provid-

ing a theory composed of four hypotheses theorizing about the relationship between IS prac-

tices and IS collaboration and grounding it in our case study observations.

5.3 Results: Case Descriptions

This section summarizes the context of each case organization and gives a rich description of

each case. We present which practices are used for collaboration (both IS practices and non-IS

practices) and the patch-flow for each unit of analysis. Table 5.5 sorts each of the studied IS

programs and its IS projects into the classification framework presented in chapter 2.

5.3.1 Automotive Org. - AutoSource

Automotive org. is a large organization developing and supplying automotive parts and equip-

ment to original equipment manufacturers and end customers. Multiple of its products are

combination of proprietary software and hardware. In 2017, its yearly revenue was over 40 bil-

lion EUR. It has over 200,000 employees distributed globally but the majority of its research

and development activities are performed within the same country.

103

Table5.5:Classification
ofstudied

innersourceprogram
s

A
utom

otiveO
rg.

Industry
O
rg.

M
edicalO

rg.

A
utoSource

Forgecom
ponents

Testinfrastructure
Im

agingplatform
D
evelopm

enttools

IS
program

Prevalence
•Selective

•Selective
•Selective

•Project-specific
•Selective

D
egreeofself-org.

•Freecom
ponentchoice

•A
ssigned

tasks
•Freecom

ponentchoice
•A

ssigned
tasks

•Freecom
ponentchoice

•A
ssigned

tasks
•A

ssigned
com

ponents
•A

ssigned
tasks

•Freecom
ponentchoice

•A
ssigned

tasks

M
arketm

echanism
s

•Locallibrary
•Locallibrary

•Locallibrary
•Elem

entsofan
•
internalm

arket
•Locallibrary

IS
projects

G
overnance

•Singleorg.unit
•Singleorg.unit

•Singleorg.unit
•Singleorg.unit

•Singleorg.unit

O
bjective

•Exploration-oriented
•U

tility-oriented
•Exploration-oriented
•U

tility-oriented
•U

tility-oriented
•Service-oriented

•Service-oriented
•Exploration-oriented
•U

tility-oriented

104

Automotive org. runs an IS program modeled after an OS foundation. The IS program’s

projects are hosted on an instance of the software forge GitHub Enterprise. We refer to this

program as AutoSource.

The program was initiated by a central research and development division with the explicit

mission to enable IS collaborationwithin automotive org. and enable collaboration and (re)use

across silos within automotive org. It is a selective and local-library (Lindman et al. 2013) IS

program which allows developers free choice of components but not tasks.

Collaboration practices

We identified nine collaboration practices that were exercised as part of industry org.’s test in-

frastructure program. These practices are the themes resulting from the thematic analysis of

the collected qualitative data (phase I and II in section 5.2.2).

Open code for all parties to read, (re)use. Every employee within the organization
is allowed to contribute to the IS projects in the AutoSource program:

“The user has read access to all resources of [AutoSource]” [AD3]

“We designed [AutoSource] and every employee of [automotive org.] can participate. Its public

and everybody can see what we do – everyone else within the company.” [AI2]

An internal marketing leaflet advertises AutoSource as enabling employees to “browse trough

all projects in [AutoSource]” and to “download and use all [AutoSource] projects” [AA1].
However, at the time of collecting our case study data, employees from two of automotive

org.’s divisionswere excluded fromparticipating inAutoSource because their IT infrastructure
is not compatible to that of the other divisions:

“There are – but that is a technical problem – excluded parties [...]. They use another technical

infrastructure than the remaining group.” [AI4]

We still consider this IS program to be open to all relevant parties because traditionally those

two divisions develop less software, operate more independently, and are significantly smaller

than the remaining divisions.

Provide singleentrypointto IS program. Automotive org. uses a software forge that

provides single entrypoint to the IS program. The feature to “browse through all projects in

[AutoSource]” is actively advertised to developers [AA1]. We explored the listing [AA9] and

105

search feature [AA10] of the software forge. In addition to the software forge, an AutoSource

portal provides additional features for listing and finding IS projects.

Open code for contributions by all parties. Similar to reading the source code and

(re)using the components, all partieswithin the organization are granted the right to contribute

code contributions to the IS projects. The same technical incompatibilities like for (re)using

components apply.

Establish committer role. Every code contribution towards an IS project in the Au-

toSource program has to be refereed and either integrated or rejected by a committer. Changes

to the code base cannot bemade without a committer’s approval [AD4,AD8]. The AutoSource

documentation defines the role of a committer (similar to our definition) as follows: “A com-

mitter is a contributor that was given write access to the code repository of a dedicated project”

[AD3].

Provide open dedicated communication infrastructure. In addition to the soft-

ware forge, theAutoSource programoffers its projects “usermailing lists, user-support forums”

[AD3]. Hyperlinks to the support forums and mailing lists are integrated into the portal [AA2,

AA10].

Communicate using closed communication. Despite the availability of infrastruc-

ture for open communication, the employees of automotive org. exercised significant closed

communication (that is communication that is not open communication).

Establishgovernancecommittees (inspired byOS foundations). AutoSource is
governed by multiple committees:

“[TheAutoSource] operational board ensures dailywork in [AutoSource] [...] [TheAutoSource]

governance board” steers [AutoSource] [...] The operational board should havemembers present

in the governance board in order to act as glue between development and management and to

bring operative sigh to the discussions]” [AD3]

Each IS projects is governed by a project management committee (PMC) [AD3].

106

Design & enforce IS license. An IS license explicitly governs the rights and obligations

of internal parties (re)using the IS software components [AD2,AD3,AN3,AN4]. The license

is modeled after an OS license. All IS projects in AutoSource need to be provided under this

specific IS license. Contributors have to sign a contributor license agreement in which they

grant others in the organization the right to use their contributions in accordance with the

IS license: “The potential contributor has to agree that the software he products is under the

AutoSource license” [AD2].

Select&coach IS projectsusingproject incubator. AutoSource runs a project in-

cubator. “The incubator filters projects on the basis of the likeliness to become successful mer-

itocratic communities” [AD3], it coaches and “helps projects to start in [AutoSource]” [AD3].

Patch-flow

Figure 5.1 shows the patch-flow (including all patches to projects of the AutoSource program)

as a chord diagram with hierarchical edge bundling (Holten 2006). The white curved boxes

represent org. units and the stacking of the boxes indicates the organizational hierarchy. We

name org. units on level 1 with Roman numbers, level 2 with letters, and level 3 with Arabic

numerals. Three points (“...”) indicate that zero or more other org units exists, but did not

contribute. We included functional org. units (for example departments for IT or corporate

research) only if they were contributing and marked them with the keyword “func”. Curved

edges indicate the patch-flow from green (contributor) to red (receiver). The width of an edge

indicates its weight (number of patches).

Table 5.6 summarizes selected metrics related to the program’s patch-flow. The first two

rows show how many of the program’s IS projects receive contributions from at least two org.

units (and, thus, at least one outside patch). The following rows show the number of org.

units involved in patch-flow and the absolute and relative patch-flow. Relative patch-flow is

the percentage of all code contributions being patches. The columns indicate the different org.

levels considered (e.g. the bottom right cell shows the relative patch-flow across org. level 1).

The AutoSource program is an IS program of small size (45 IS projects) with moderate de-

velopment activity (2493 code contributions in the considered year). Patch-flow occurs tomea-

surable magnitude in the program (59 patches, 2.37% relative patch-flow) and a sizable fraction

107

Figure 5.1: Patch-flow in automotive org.’s AutoSource program

func_f func_g
func_h

func_i
bu_a

bu_b
func_b

bu_c
func_a

bu_d

...
func_jfunc_kbu_e

bu_f
bu

_g

bu
_h

bu
_i

fu
nc

_c
fu

nc
_d

bu
_j

bu
_k

bu_l
func_e

... func_I

div_I

div_V

func_II

di
v_

II

div
_II

I

div_IV

Table 5.6: Patch-flow metrics for automotive org.’s AutoSource program

Level 3 Level 2 Level 1

IS projects with≥ two org. units contributing
Abs. (number of projects) / 6 / 45 6 / 45
Rel. (percentage of projects) / 13.33% 13.33%

Org. units involved in IS collaboration
Abs. (number of org. units) / 5 4

Patch-flow
Abs. (number of code contributions) / 59 / 2493 59 / 2493
Rel. (percentage of all code contributions) / 2.37% 2.37%

108

of IS projects (six IS projects, 13.33%) receive outside contributions from other org. units on

level 1 and 2. While only a few business units on level 2 (five) are involved in the collaboration,

all except of one divisions on level 1 (four) are involved (when not counting the two org. units

that are included in the program for technical reasons). All observed patch-flow relationships

cross the highest level of automotive org. Three of the five business units and two of three the

divisions involved in collaboration are functional org. units.

5.3.2 Automotive Org. - Forge Components

In addition to AutoSource, we found a second IS program at automotive org. The second

IS program at automotive org. is more informal. Because before mentioned software forge

exists, developers started their own IS projects on the forge independently of the AutoSource

program. As these projects in this program are a lose collection of software components hosted

on the software forge, we refer to them (and the informal IS program they form) as the forge

components. It is a selective and local-library (Lindman et al. 2013) IS program which allows

developers free choice of components but not tasks.

Collaboration practices

We observed five collaboration practices that were exercised for the forge components. The

forge components are not part of a formal program but rather the projects were initiated in

a self-organized fashion. The practices that are exercised were not designed intentionally by

employees of automotive org. but are shaped by the used software forge and its features.

Opencode for all parties toread, (re)use; open code forcontributions by all
parties. Similar to AutoSource, all parties within the organization can access the software
forge, read software code, and (re)use and contribute to the ISprojects. Similarly toAutoSource
projects, the IS projects that are public within the organization [AN5]. An interviewee summa-
rized:

“Well, allright, this is not only present in [AutoSource]. But [there is] collaboration where you

have a shared repository, where everybody sees what others are doing there, and you self-organize”

[AI2].

Similarly to the AutoSource program, two divisions are excluded due to incompatibility of

their infrastructure.

109

ProvidesingleentrypointtoISprogram. Automotiveorg.’sGitHubEnterprise forge

serves as a single entrypoint to the forge components. Individuals searching for a specific IS

project can make use of the features the forge provides, e.g. show a list of all recently created IS

projects [AA9].

Establish committer role. No processes or roles are defined explicitly. However, the

used software forge implicitly enforces that not every developer has write access to IS project’s

repositories by default. Rather, write access must be granted explicitly. Thus, those who have

write access to an IS projects must elevate others to committers by granting them write access

for their project’s repository [AA9].

Providededicatedopencommunication infrastructure. Theused software forge

provides an issue tracker for each IS project. As one specific issue tracker is automatically pro-

vided per IS project, we consider this dedicated open communication infrastructure.

Patch-flow

Figure 5.2 and table 5.7 summarize the patch-flowdata for the forge component program. They

follows the same conventions as the previous figure and table.

The forge components form a large IS program (1789 IS projects) and receive a large number

of code contributions (37,368) in the considered time interval. A large number of org. units

(17 on level 2) are involved in the collaboration. All divisions (except those excluded from the

program for technical reasons) are involved in collaboration. However, only a small fraction

of IS projects receives outside patches at all (67 or 3.75% across level 2; 40 or 2.24% across level

1). The absolute patch-flow is high (823 across level 2; 412 across level 1) but significantly lower

on level 1 than on level 2. Despite the high absolute patch-flow, only a small fraction of code

contributions are patches (2.20% across level 2, 1.10% across level 1).

5.3.3 Industry Org. - Test Infrastructure

Industry org. is a large organization catering to multiple domains in light and heavy industries.

Its domains include energy systems and factory automation. In 2017 its yearly revenue was

over 60 billion EUR. It has over 300,000 employees distributed globally but the majority of

110

Figure 5.2: Patch-flow in automotive org.’s forge components program

func_f func_g
func_h

func_i
bu_a

bu_b
func_b

bu_c
func_a

bu_d

...
func_jfunc_kbu_e

bu_f
bu

_g

bu
_h

bu
_i

fu
nc

_c
fu

nc
_d

bu
_j

bu
_k

bu_l
func_e

... func_I

div_I

div_V

func_II

di
v_

II

div
_II

I

div_IV

Table 5.7: Patch-flow metrics for automotive org.’s forge components program

Level 3 Level 2 Level 1

IS projects with≥ two org. units contributing
Abs. (number of projects) / 67 / 1789 40 / 1789
Rel. (percentage of projects) / 3.75% 2.24%

Org. units involved in IS collaboration
Abs. (number of org. units) / 17 5

Patch-flow
Abs. (number of code contributions) / 823 / 37,368 412 / 37,368
Rel. (percentage of all code contributions) / 2.20% 1.10%

111

its research and development activities are performed within the same country. Multiple of

industry org.’s products consist of both proprietarily hardware and software.

Industry org. runs a programwhere developers of different teams can collaborate on compo-

nents of their software test infrastructure and test tools. We refer to it as the test infrastructure

program.

The programwas initiated by an org. unit responsible for innovation and platform topics of

one of industry org.’s flagship products. Dedicated teams are responsible for testing the com-

ponents and feature clusters of this product. The program was initiated with the goal to avoid

duplication of functionality in and increase reuse of test infrastructure and test tools. Before

the initiation of the test infrastructure program, each of the teams would independently de-

velop infrastructure components to test those components or features they are responsible for.

The program is a selective and local-library (Lindman et al. 2013) IS program which allows de-

velopers free choice of components but not tasks.

Collaboration practices

We identified six collaboration practices that were exercised as part of industry org.’s test infras-

tructure program.

Open code for all parties to read and (re)use. All parties within industry org. can
see the source code and (re)use the software components that are developed as part of the
projects of the test infrastructure program:

“The [...] code we develop: It’s for everyone. We just have the responsibility for it.” [II2]

“Those [projects] are libraries – ready made functionality – that everybody can use. Not only

our [team], but everybody. [...] I have read access. Also other teams can look at my source code.

That’s what it [the program] is made for” [II3]

“I have full access on the source code [of the test infrastructure projects]” [II4]

Provide single entrypoint to IS program. To enable individuals to find components

that are relevant to them, the team responsible for innovation and platform topics (discussed

earlier) maintains a wiki page [ID5] with information on each available project, contact persons,

and links to further resources. The wiki page serves as a single entrypoint towards the IS pro-

gram.

112

Open code for contributions by all parties. Every employee of the organization
can contribute code to the program’s projects:

“Everybody can influence [a project] at any point in time: either reporting a bug or contributing

an extension” [II3]

Employees also claimed to make use of the opportunity to contribute code to IS projects:

“We fix bugs in [component a], [component b], [component c] ourselves as well.” [II5]

Referring to an IS project: “There is surely one or the other thing that we contributed because it

was simply not yet available or because we have a solution already within our environment.” [II2]

Performadhoccodereviewandmentoring. There is no committer role (as defined
in chapter 1). Code reviews of contributions before their integration into the code base are not
mandatory:

“It’s not mandatory that I have to do a review for each code contribution. Not mandatory. No.”

[II3]

“There is nobody who examines the code, one checks in. You got to know what you are doing.

And well, you check it in [into the repository] and then it’s in” [II5]

“In principle every body can check in [changes]. If it builds, it’s in.” [II4]

Even though not mandatory, code reviews are performed incidentally in an ad hoc fashion:

“We at the [specific] team, we have the habit of at least asking those responsible for an [IS project]

to perform a review.” [II2]

While code review is not mandatory and no committer role is formally established, there are
individuals that are responsible or considered responsible by their peers for specific IS projects.
There are often the contact persons listed on the wiki page discussed above:

“If we do our own work on a [specific IS project], then we do not just check in our contribution,

but we write to [a specific employee], who is responsible for [the specific IS project] and ask him:

‘We had to adapt something. Can you have a look at that?”’ [II2]

Communicate using closed communication. A majority of communication in the
organization and regarding the IS projects is done using synchronous and asynchronous closed
communication. Interviewees responded as follows when asked how they communicate about
their work on the IS projects:

“Typically via communicator [an instant messaging tool], email, sometimes using face to face

meetings. If somebody works in the same building, you get together.” [II5]

“They communicate among themselves, using communicator, email.” [II4]

113

Establish informal governance mechanisms. Industry org. established no formal
governance mechanisms (like standing committees) to govern the test infrastructure program.
However, they established informal governance primarily by a set of recurring meetings:

“There are regular status meetings for developers [of test infrastructure components and tools]”

[II5]

“[There is] a [test infrastructure] planningmeeting. What’s going on? What’s the status? How to

continue regarding tooling? For example. So, there are different things put on the agenda.” [II3]

Patch-flow

Figure 5.3 and table 5.8 summarize the patch-flowdata for the test infrastructure program. They

follows the same conventions as the previous figure and table.

The test infrastructure program is of small size (35 IS projects) with low tomoderate develop-

ment activity (1853 code contributions). Themajority of collaboration in the test infrastructure

program happens within one hot spot: Between the level 3 org. units 1, 2, 3. These org. units

are in close proximity to one another as they are both children of the same business unit and

segment. There is high patch-flow (341 patches) between them. A few patches (seven) were

contributed by org. units in higher distance (crossing level 2 and 1). A sizable fraction of IS

projects (13 or 37.14% considering level 3; 4 or 11.43% considering level 2 and 1) received at least

one outside patch.

5.3.4 Medical Org. - Imaging Platform

Medical org. is a hardware and software company producing medical products. Its main busi-

ness focus is on integrated hardware-software products for diagnostic imaging (for example

magnetic resonance imaging devices or computer tomography scanners). With 45,000 employ-

ees and an annual revenue of 10 billion EUR, medical org. is smaller than the other case orga-

nizations. As typical for medical products, practically all of medical org.’s products are tightly

regulated by government bodies (like the United States Food and Drug Administration).

Amajority ofmedical org.’smedical imaging devices are developed as part of a software prod-

uct line (SPL) for medical imaging devices. We refer to the SPL’s platform as the imaging plat-

form. Inspired by IS, selected developers from one specific business unit developing products

based on the platform (product unit) can perform code contributions to the imaging platform.

114

Figure 5.3: Patch-flow in industry org.’s test infrastructure program

1
2

3

4

5
...

6

7

...

...
89

...

10

...
...

...
...

...

...
...

bu_a
bu_b

...bu_c

bu
_d

...
...

...

...

...
...

seg_I

se
g_

II

se
g_

III
se

g_
IV

se
g_

V

seg_VI
seg_VII

Table 5.8: Patch-flow metrics for industry org.’s test infrastructure program

Level 3 Level 2 Level 1

IS projects with≥ two org. units contributing
Abs. (number of projects) 13 / 35 4 / 35 4 / 35
Rel. (percentage of projects) 37.14% 11.43% 11.43%

Org. units involved in IS collaboration
Abs. (number of org. units) 4 2 2

Patch-flow
Abs. (number of code contributions) 348 / 1853 7 / 1853 7 / 1853
Rel. (percentage of all code contributions) 18.78% 0.38% 0.38%

115

The imaging platform is a project-specific (Gurbani et al. 2010) IS programwhich allows de-

velopers free choice of components but not tasks. Partially, the product units indirectly finance

the development of the platform by paying a fee to the platform unit. Thus, one could argue

it shows elements of an internal-market (Lindman et al. 2013).

Collaboration practices

We identified four collaboration practices that were exercised as part of medical org.’s imaging

platform program.

Open code to read, (re)use only for selected parties. All parties in the organiza-

tion are granted read access to the source code [MI3]. However, the software components of

the imaging platform cannot be freely reused by all developers within the organization. As typ-

ical in SPL engineering, only developers of org. units taking part in the software product line

are allowed to use the software as part of their products [MI3].

Open code for contributions only by selected parties. The openness to con-

tribute code contributions to the platform is restricted. As a consequence of regulatory re-

quirements, every developer must receive training courses and a certification for the develop-

ment processes he or she follows. Developers of a product unit are trained and certified in the

processes of their product unit. Developers of the platform unit are trained and certified in the

processes of the platform unit.

If a developer from a product unit wants to contribute to code from the platform unit (pri-
marily the imaging platform), has to receive a specific training as well:

“If I am a developer of [a product unit], and I want to contribute to the [platform], I can’t just

readily do it. [...] We designed a special delta-training with which a [product-]developer receives

the necessary privileges – from the process perspective – by means of an additional training to

change things at the [platform].” [MI3]

This training is only available to developers of one specific product unit [MD1]. As a conse-

quence, only developers of this specific product unit are enabled to contribute code to the plat-

form and only after they passed the training and received certification.

116

Establish mandatory code review (but not committer role). Every code con-
tribution to the imaging platform has to be reviewed by an additional developer before it is
integrated into the code repository:

“So,mandated by our software processwe have the obligation to review. Both handing in the code

for review and performing the code review [...] has to follow specific guidelines.” [MI3]

“Reviews of various artifacts are mandatory. [...] Product code must be reviewed by at least on

additional software developer” [MI1]

There is no dedicated committer, but contributors can select themselves who they ask for a
review [MI1,MI3,MN6]:

“The developer can pick the reviewer himself [...] Often you simply ask somebody fromyour own

team” [MI1]

“If a colleague doesn’t react to a review ticket within two hours, the author will typically search

for another reviewer” [MI1]

Communicate using closed communication. We found no evidence of open com-

munication being exercised as part of the IS collaboration on the imaging platform. Closed

communication is exercised, for example in the form of face-to-face meetings [MI3].

Patch-flow

Figure 5.4 and table 5.9 summarize the patch-flow data for the test infrastructure program.

They follows the same conventions as the previous figure and table.

As a project-specific IS program (Gurbani et al. 2010, chapter 2), the IS program contains

only one IS project – the imaging platform. However, this project is developed actively (20,395

code contributions in the considered year).

The chord diagram is dominated by onepatch-flow edgewith a highweight: Themajority of

patch-flow (464 patches) flow from the product unit bl1 (whose developers are able to receive

training and certification for the platform processes) to the platform unit bl4. We observed

one patch from the product unit bl3. This is a consequence of developers switching business

lines but still retaining their right to contribute to the platform. All org. units participating

in collaboration are children of the same business area bab and are in close proximity to one

another.

117

Figure 5.4: Patch-flow in medical org.’s imaging platform program

func_1

...

bl_1
bl_2

bl_3

bl_4

...
func_2

...

...
...

...

...
ba_a

ba_b

fun
c_

a

ba
_c

ba
_d

ba
_e

ba_f

Table 5.9: Patch-flow metrics for medical org.’s imaging platform program

Level 3 Level 2 Level 1

IS projects with≥ two org. units contributing
Abs. (number of projects) 1 / 1 0 / 1 /
Rel. (percentage of projects) 100.00% 0.00% /

Org. units involved in IS collaboration
Abs. (number of org. units) 3 1 /

Patch-flow
Abs. (number of code contributions) 465 / 20,395 0 / 20,395 /
Rel. (percentage of all code contributions) 2.28% 0.00% /

118

5.3.5 Medical Org. - Development tools

In addition to the imaging platform,medical org. runs the development tools IS program. The

development tools program allows developers to provide and collaborate on non-product soft-

ware (primarily development tools). The program does not use a software forge. Rather, a

central TFS repository and additional intranet pages are provided. The program is a selective

and local-library IS program (Lindman et al. 2013) which allows developers free choice of com-

ponents but not tasks.

Collaboration practices

We found two collaboration practices to be exercised in the development tools program. We

found no evidence of any practices for program governance or open communication.

Open code for all parties to read, (re)use. Internal marketing slides advertise the IS

projects part of the development tools program to be “shared across [business lines]” [MD2].

The repository that holds the development tools is accessible for all developers within the or-

ganization (even for us as researchers with very basic user privileges in the organization the

repository was accessible and we could read the code).

Open code for contributions by all parties. Similarly, the repository showed no

indication and we found no evidence of any restrictions of which developers can contribute to

it. Upon request our contacts in medical org. confirmed to us that the development tools are

open for code contributions by all parties.

Perform ad hoc code review andmentoring. We did not find any evidence suggest-

ing that code review was generally mandatory for contributions to the development tools or

even a committer role had been established. However, our contacts at medical org. confirmed

to us that (similar to ad hoc code reviews observed at industry org.) some contributors may

choose to ask a knowledgeable person or even somebody who is (perceived to be) responsible

for an IS projects to review their code before it’s contributed and there are no enforced rules

regarding the review of code contributions.

119

Figure 5.5: Patch-flow in medical org.’s development tools program

func_1

...

bl_1
bl_2

bl_3

bl_4

...
func_2

...

...
...

...

...
ba_a

ba_b

fun
c_

a

ba
_c

ba
_d

ba
_e

ba_f

Table 5.10: Patch-flow metrics for medical org.’s development tools program

Level 3 Level 2 Level 1

IS projects with≥ two org. units contributing
Abs. (number of projects) 7 / 120 0 / 120 /
Rel. (percentage of projects) 5.83% 0.00% /

Org. units involved in IS collaboration
Abs. (number of org. units) 4 1 /

Patch-flow
Abs. (number of code contributions) 85 / 1511 0 / 1511 /
Rel. (percentage of all code contributions) 5.63% 0.00% /

120

Patch-flow

Figure 5.5 and table 5.10 summarize the patch-flow data for the development tools program.

They follows the same conventions as the previous figure and table.

The development tools are an IS program of moderate size (120 IS projects) with low de-

velopment activity (1511 code contributions in the considered year). Only a small fraction of

IS projects (7 or 5.85% considering level 3) receive any outside patches. Only few parties (four

business lines) are involved in collaboration.

We observed only collaboration in close proximity between business lines on level 3 that are

children of the same business area bab. We observed low to moderate patch-flow (85 patches).

Due to the low development activity, the relative patch-flow moderate (5.63%).

5.4 Results: Cross Synthesis

The previous section provided a description of each IS program (unit of analysis) observed in

the studied organizations (cases).

This sections synthesizes across the studied units of analysis. We compare the collaboration

practices exercised in the IS programs and assess whether these are IS practices or non-IS prac-

tices (section 5.4.1), compare the observed patch-flow and lay out similarities and differences

among the IS programs (section 5.4.2), and subsequently discuss correlations between the exer-

cised IS practices and observed IS collaboration (section 5.4.3).

5.4.1 Inner Source Practices

Table 5.11 summarizes all practices we observed in the IS programs. These practices are the

themes resulting from the thematic analysis of the collected qualitative data (resulting from

phase I described in section 5.2.2). Over all studied organizations and IS programs, we iden-

tified a total of 14 IS practices. We give each practice a number from 1 to 14 and refer to the

practice using this number throughout this chapter. The right column of the table indicates

which data items the practices were derived from.

The gray bars separate the groups the practices belong to (resulting from the grouping in

phase II). We grouped the IS practices into four groups (a) Read, (re)use code, b) Contributions

to code, c) Open communication, and d) Governance).

121

Table 5.11: Summary of observed practices

Name IS Prac-

tice?

Description Data items

a) Read, (re)use code

1) Open code for all par-

ties to read, (re)use

✔ Yes The source code of IS practices is opened for all de-

velopers within the organization and all developers

can (re)use IS components.

AA1, AD3, AI2,

AI4, ID5, II2 − II5,

MI3,MD2

2) Provide single entry-

point to IS program

✔ Yes A single entrypoint to the IS program and its

project portfolio is provided (for example using a

wiki or by a software forge with features to list and

search for IS projects).

AA1, AA9, AA10,

ID1, ID5, II2

3) Open code to read,

(re)use only for selected

parties

✘ No Only developers from selected org. units can read

source codeof ISprojects or (re)use IS components.

MI3

b) Contributions to code

4) Open code for contri-

butions by all parties

✔ Yes Every developer in the organization can contribute

code changes to the IS projects.

AD1,AD3,AI2, II3,

II4, II5,MN2

5) Establish committer

role

✔ Yes Every IS project has at least one committer. Com-

mitters review code contributions and decide on

their rejection or inclusion.

AA9, AD3, AD4,

AD8

6) Perform ad hoc code re-

views and mentoring

✘ No Code review of code contributions before integra-

tion is not mandatory. In an ad hoc fashion, con-

tributors incidentally ask a colleaguewithperceived

knowledge orwho is responsible for an ISproject to

review their patch.

II2 − II5

7) Establish mandatory

code review (but not

committer role)

✘ No Code review is mandatory before a code contribu-

tion is integrated into the code base. However,

there is no dedicated committer but developers

choose themselveswhomto ask to review their code

contribution.

MI1,MI3,MN6

122

Table 5.11: Summary of observed practices - continued

Name IS Prac-

tice?

Description Data items

8) Open code for contri-

butions only by selected

parties

✘ No Only developers from selected org. units or with

specific credentials can contribute code changes to

the IS projects. Other developers are excluded from

contributing.

MN3,MN4

c) Open communication

9) Provide dedicated

open communication

infrastructure

✔ Yes The IS program provides dedicated infrastructure

for open communication (for examplemailing lists

or forums).

AA2, AA10, AD3

10) Communicate using

closed communication

✘ No The developers communicate regarding the IS

projects using closed communication (communica-

tion that is not open communication) for example

in the form of meetings, email, or telephone calls.

AD3, AI1, AI2,

II2 − II5,ME2

d) Governance

11) Establish governance

committees (inspired by

OS foundations)

✔ Yes The ISprogram is governedby governance commit-

tees inspired by those found at open source founda-

tions (for example a steering committee governing

the IS program, or a project management commit-

tee governing a specific IS project).

AD3, AI1, AN1

12) Design & enforce IS li-

cense

✔ Yes Each project has to be provided under a specific IS

license that explicitly governs rights andobligations

of internal parties using the software. Contributors

have to sign a contributor license agreement.

AD2, AD3, AD5,

AN3, AN4

13) Select & coach IS

projects using project

incubator

✔ Yes The IS program runs a project incubator with

the goal to identify and coach new promising IS

projects.

AD3, AD6, AD7,

AN4, AI1 − AI3

14) Establish informal gov-

ernance mechanisms

Unclear The IS program is governed using informal struc-

tures like recurring coordination meetings but no

formal committees.

II2 − II5, II7

123

Assessment of practices

For each collaboration practice resulting from the thematic analysis of the qualitative data, we

used literature to assess whether it is an IS practice or a not (phase III in section 5.2.2).

We assess the practices as follows:

• IS is “open to all developers behind the firewall [of an organization]” (Dinkelacker et al.

2002) and gives these developers “universal access to [IS] development artifacts” (Stol

et al. 2014). Prior work suggests inclusion of all parties (1) Open code for all parties to

read, (re)use; 4) Open code for contributions by all parties) and discourages exclusion (3)

Open code to read, (re)use only for selected parties; 8) Open code for contributions only by

selected parties).

• Riehle et al. (2009) suggest to provide a software forge that serves as a starting point for

finding ISprojects (2)Provide single entrypoint to IS program). Software forges arewidely

used by practitioners (Cooper and Stol 2018).

• Typically, patches in IS need approval by a committer (Gurbani et al. 2006; Riehle et al.

2009; Cooper and Stol 2018) (5) Establish committer role). Not implementing a com-

mitter role is discouraged (6) Perform ad hoc code reviews and mentoring; 7) Establish

mandatory code review (but not committer role)).

• Open communication is a key element of OS (Riehle 2015) and IS (Capraro and Riehle

2017). We consider practices encouraged if they support open communication (9) Pro-

vide dedicated open communication infrastructure) and discouraged if not (10) Commu-

nicate using closed communication).

• Governance practices that are inspired by OS (12) Design & enforce IS license) or OS

foundations (11)Establish governance committees (inspired byOS foundations); 13) Select

& coach IS projects using project incubator) are encouraged by prior work (Riehle 2016;

Riehle et al. 2016).

We were not able to identify whether 14) Establish informal governance mechanisms should be

considered an IS or non-IS practice. On the one hand, there are hundreds of OS project who

124

are governed in an informal manner. However, OS projects are typically not governed using

recurring telephone meetings as observed at industry org.’s test infrastructure program.

In table 5.11, we marked the IS practices (those suggested by IS literature) with a green check

mark symbol and non-IS practices (those discouraged by IS literature) with a yellow cross.

Practices across the IS programs

Table 5.12 shows which practices are implemented in each IS program. Similar to the previous

table, we marked IS practices with a green check mark and non-IS practices with a yellow cross.

The IS programs in the table are sorted left to right by ascending number of (green) IS practices.

Comparing the (IS and non-IS) practices across IS programs, we observed significant differ-

ences among the IS programs:

• There is significant diversity among the studied IS programs in terms of exercised IS prac-

tices. While there are programs that operate with no (medical org.’s imaging platform)

or little (medical org.’s development tools) IS practices, other programs implement sig-

nificantly more IS practices (automotive org.’s AutoSource). All IS programs exercised

non-IS practices. Where IS practices where exercised, the non-IS practices were exercised

in addition to the IS practices.

However, we also observed similarities among all (or a majority of) the studied IS programs:

• For none of the programs, we found that evidence of significant open communication

being exercised (despite open communication being a key element of IS). Rather, we

observed for three of the programs that significant closed communication (that is com-

munication that is not open communication) takes place.

• A majority of programs (medical org.’s programs, automotive org.’s forge components)

do not exercise any practices to govern the portfolio of IS projects or the program itself.

Only the AutoSource program uses formal committees andmechanisms for governance.

OS-inspired governance practices have low prevalence.

5.4.2 Patch-Flow

Table 5.13 summarizes patch-flow related metrics. Each column shows metrics for one IS pro-

gram. The rows show the following: Rows in part (a) show an overview of the collected patch-

125

Table 5.12: Practices by inner source program

Dev.toolsImag.plat. Test infr. For.comp. AutoSource

Medical
Org.

Automotive
Org.

Industry
Org.

Practice

a) Read & (re)use code

b) Contributions to code

c) Open communication

d) Governance

13) Select & coach IS projects using project incubator

11) Establish governance committees (insp. by OS found.)

12) Design & enforce IS license

14) Establish informal governance mechanisms

10) Communicate using closed communication

9) Provide dedicated open communication infrastructure

8) Open code for contributions only by selected parties

7) Establish mandatory code review (but not committer)

5) Establish committer role

4) Open code for contributions by all parties

6) Perform ad hoc code reviews and mentoring

1) Open code for all parties to read, (re)use ✔ ✔

3) Open code to read, (re)use only for selected parties ✘

2) Provide single entrypoint to IS program

Exercised IS practice Exercised Non-IS PracticeExercised practice

✔ ✔

✔✔✔

✔ ✔ ✔ ✔

✔ ✔

✘ ✘

✘

✘

✔ ✔

✘ ✘ ✘

✔

✔

✔

✔ ✘

126

Table 5.13: Overview of patch-flow metrics per inner source program

a) Data overview

Interval Sept '15 -
Aug '16

Aug '16 -
Jul' 17

Jul '15 -
Jun '16

Jun '17 -
May '18

Jun '17 -
May '18

Time if measurement Jul - Sept '16 Aug '17 Jun - Jul '16 Jun '18 Jun '18

Number of code contr. 20,395 1511 1853 37,368 2493

e) Relative patch-flow

Across level 3 Low
(2.28%)

Moderate
(5.63%)

High
(18.78%) / /

Across level 2 None
(0.00%)

None
(0.00%)

Very low
(0.38%)

Low
(2.20%)

Low
(2.37%)

Across level 1 / / Very low
(0.38%)

Low
(1.10%)

Low
(2.37%)

f) Absolute patch-flow

Across level 3 High
(465)

Moderate
(85)

High
(348) / /

Across level 2 None
(0)

None
(0)

Very low
(7)

High
(823)

Across level 1 / / Very low
(7)

High
(412)

Moderate
(59)

c) Distance of collaborating org. units

Distance Close proximity Close proximity Majority in
close proximity

High distance &
close proximity High distance

Dev.toolsImag.plat. Test infr. For.comp. AutoSource

Medical
Org.

Automotive
Org.

Industry
Org.

d) IS projects with ≥ two org. units contributing

Level 3 100.00%
(1/1)

5.83%
(7/120)

37.14%
(13/35) / /

Level 2 0.00%
(0/1)

0.00%
(0/120)

11.43%
(4/35)

3.75%
(67/1789)

13.33%
(6/45)

Level 1 / / 11.43%
(4/35)

2.24%
(40/1789)

13.33%
(6/45)

b) Org. Units involved in IS collaboration

Level 3 3 4 4 / /

Level 2 None None 2 17 5

Level 1 / / 2 5 4

Moderate
(59)

127

flow data. Part (b) summarizes the number of org. units involved in patch-flow considering

different org. levels. Part (c) summarizes the distance of org. units involved in collaboration

per IS program. Part (d) shows the percentage and number of IS projects with more than one

org. units contributing to it considering the different org. levels, as well as the total number of

IS projects in a program. Part (e) and (f) summarize the relative and absolute patch-flow per

considering different org. levels.

The observed IS programs are of different activity. The number of total code contributions

per IS program range from 1511 to 37,668 code contributions in the considered year. The ob-

served patch-flow and related metrics differ significantly among the IS programs as well:

• The size of the IS programs, measured by the number of IS projects, differs significantly.

Automotive org.’s forge components are large (1789 IS projects) while other programs

like automotive org.’s AutoSource (45 IS projects) or industry org.’s test infrastructure

(35 IS projects) are smaller.

• The distance of org. units involved in collaboration differs as well. While for some pro-

grams (those at medical org.) only parties in close proximity collaborate, we observed

collaboration between parties in high distance in the other IS programs.

However, we also observed similarities among all (or a majority of) the studied IS programs:

• While the observed patch-flow in all studied IS programs differed in terms of howmany

patches were flowing, how many parties were involved in collaboration, and how high

the distance between collaborating parties was, we still observed patch-flow in all of the

studied IS programs.

• We found that for all IS programs a majority of code contributions do not constitute

patch-flow across the considered org. levels. Themajority of code contributions are code

contributions made by employees of the org. units that are responsible for an IS project.

• The majority of IS projects (in the four studied programs that are not project-specific IS

programs) does not receive outside patches.

128

5.4.3 Correlations

We identified correlations between IS practices that are exercised in an IS program and the re-

sulting patch-flow. These correlations are not statistical correlations (like those expressed with

Pearson, Kendall, or Spearman coefficients). Rather, we observed and compared IS practices

and patch-flow across the different IS program as a base for an argumentative interpretation.

We made the following observations:

• We observed that a higher number of IS practices exercised in an IS program, does not

correlate with more absolute patch-flow. However, the number of IS practices corre-

late with higher relative patch-flow (percentage of all code contributions being patches).

We will discuss in section 5.5, why we believe this correlation not to be caused by causal

relationship.

• We observed that patch-flow happened in all IS programs including those where no IS

practices were exercised. We will discuss in section 5.5 our interpretation that IS collabo-

ration is also possible with rudimentary IS-inspired practices.

• Weobserved that a higher number of ISpractices, correlateswith IS collaboration among

org. units in higher distance in the organization. We will discuss in section 5.5, why we

believe this correlation to be caused by a causal relationship.

• Weobserved ISprogramswith governancepractices tobe smaller, but tohave less projects

receiving no outside patches. We will discuss in section 5.5, why we believe this to be

caused by a causal relationship.

5.5 Interpretation

In this section, we interpret the case study observations to answer our research questions. We

interpret the magnitude of observed IS collaboration (RQ 4) and the effect of IS practices on

IS collaboration (RQ 5).

5.5.1 Magnitude of Inner Source Collaboration

We found that patch-flow exists tomeasurable extent in all five case study organizations. To the

best of our knowledge, this is the first empirical evidence of IS collaboration among large org.

129

units within organizations. IS collaboration (measured using patch-flow) is possible within

software developing organizations.

We found that both relative and absolute patch-flow differed across the studied IS programs.

However for all IS programs, a large majority of code contributions did not constitute patch-

flow (from outside org. units). We interpret the low patch-flow to mean that IS collaboration

exists but is not everyday routine for the developers in the studied organizations.

5.5.2 Effect of Inner Source Practices on Collaboration

We interpret the case study observations by providing a theory (consisting of four hypotheses)

on the relationship between IS practices and IS collaboration.

Effect on Magnitude of Collaboration

Todiscuss themagnitude of IS collaboration, we look both at the absolute patch-flow (number

of patches across organizational boundaries) and the relative patch-flow (percentage of code

contributions being patches across organizational boundaries).

Absolute patch-flow. We observed that a higher number of IS practices exercised in an

IS program, does not correlate with more absolute patch-flow. At medical org.’s imaging plat-

form, we observed the highest patch-flow between org. units on level 3 but the least IS practices

implemented. Similarly, automotive org.’s forge components, showed the highest patch-flow

on level 1 and 2, despite more IS practices being exercised in the AutoSource program.

Relative patch-flow. For the relative patch-flow, we observed a correlation to the num-

ber of IS practices. However, we do not believe this to be caused by a causal relationship be-

cause it is influenced by other factors: Medical org.’s imaging platform is actively maintained

and developed by developers whowork on the platform full time. Thus, it receivedmore (non-

patch-flow) code contributions significantly decreasing the relative patch-flow. In addition, the

difference in relative patch-flow between automotive org.’s forge components and AutoSource

is not significant. We formulate the following hypothesis:

Hypothesis 1: A higher number of IS practices alone does not necessarily result in more

IS collaboration.

130

Rather, we believe additional contextual factors influence howmuch IS collaboration is tak-

ing place.

Desire to Collaborate vs. Friction while Collaborating

Two of these contextual factors are the desire or need of an individual to contribute on the one

hand, and (process) obstacles imposing friction when contributing on the other hand.

We observed a diverse set of IS practices implemented by the analyzed IS programs. We

found programs with many IS practices (those at industry org. or automotive org.) but also a

programwhere we identified not a single IS practice (medical org.’s imaging platform). Yet, we

observed patch-flow (and thus IS collaboration) at all studied IS programs.

In the case ofmedical org.’s imaging platform, as typical for a large SPL, hundreds of develop-

ers’ daily work is built uponmedical org.’s imaging platform. If a product developer in an SPL

engineering setup requires a change to the platform, this typically triggers a lengthy and costly

process (Riehle et al. 2016). Diverting to an alternative component when changes are needed is

not possible: Only one such platform is available to developers of medical org. We formulate

the following hypothesis:

Hypothesis 2: Significant IS collaboration is possiblewith rudimentary IS practices (high

friction) if there is a strong need or desire to collaborate.

Effect on Distance of Collaborating Org. Units

We observed the following correlation: Where more IS practices were implemented, the dis-

tance of collaborating org. units increased. In medical org.’s programs with no or few IS prac-

tices, we only observed patch-flow between org. units in close proximity. In the other IS pro-

grams, we observed more patch-flow across org. units in higher proximity.

We believe this correlation is the result of a causal relationship: Employees of org. units in

close proximity often have preexisting social or work relationships to one another. These rela-

tionships can be the result of geographical co-location, shared second level managers, work in

a similar domain or on the same product or product family, and other reasons. Org. units in

high distance are less likely to have such preexisting relationships.

Because of this, we believe IS practices to benefit particularly collaboration among org. units

in high distance:

131

They benefit from open communication infrastructure (practice 9) because they will other-

wise be excluded from communication between those in closer proximity. Governance prac-

tices (practice 11, 12, 13) ensure similar rights and obligations to all parties involved in an IS

project. This gives org. units in high distance the same voice as their directly neighboring org.

units. Similarly, a single entry point to the IS program (practice 2) or mentoring provided by

a committer (practice 5) aids those in high distance, who have little other possibilities to find a

far away IS project or receive help through existing social or work relationships. This is a well-

known effect in OS as well where parties in even higher organizational distance (i.e. parties

that typically are not part of the same organization) collaborate. We formulate the following

hypothesis:

Hypothesis 3: IS practices enable collaboration among org. units in high organizational

distance.

Effect of Governance Practices

The two programs that exercise governance practices (test infrastructure, AutoSource), host a

comparatively low number of IS projects (35 and 45). However, a relatively high percentage of

their projects receive outside patch-flow (for example 11.43% and 13.33% on level 2).

We believe this to be an effect of the exercised governance practices. First, the practice 13)

Select& coach IS projects using project incubator ensures that only those projects with a potential

for later collaboration are included in an IS program. The coaching of projects makes sure they

are fit to receive contributions. Second, governance practicesmake it non-trivial for individuals

or teams to create and run a new IS project. As a result, we believe self-selection leads only those

parties who are serious about initiating a new IS project to go throughwith it despite the cost of

exercising governance practices (e.g. forming a PMC or participating in recurring governance

telephone calls).

In contrast, those IS projects with fewer restrictions and no governance practices (develop-

ment tools, forge components), have comparatively high numbers of projects (120, 1789) but a

significantly lower percentage of these IS projects receive outside patch-flow (0.00% and 3.75%

on level 2). Many IS projects might be created without much thought or because it is a conve-

nient way for developers to receive a place to dump software source code of arbitrary quality

and with mixed potential for collaboration. We formulate the following hypothesis:

132

Hypothesis 4: Governance practices and restrictions in project initiation contribute to a

small IS program but with a higher percentage of projects attracting outside patches.

Being able to attract outside patch-flow is one indicator of an IS project’s success.

5.6 Trustworthiness

Similar to the case study we presented in chapter 3 (evaluating the viability and utility of the

patch-flow method), we discuss the trustworthiness (and included in that also the limitations)

of this case study along the dimensions credibility, transferability, dependability, and confirma-

bility proposed by Guba (1981).

5.6.1 Credibility

Credibility is the degree to whichwe can establish confidence in the truth of our findings in the

context of the inquiry (Guba 1981). We undertook the following steps to increase the credibility

of our case study findings.

We performed peer debriefing (Guba 1981). We intensively discussed this work and gathered

feedback from colleagues on multiple occasions.

We performedmember checks (Guba 1981). In all three organizations, we presented the find-

ings from our analysis in shortened practitioner-focused reports. In addition, we constantly

gathered feedback on our interpretations from employees of all three studied organizations. In

each automotive org. and medical org. we performed an additional dedicated member check

session with a knowledgeable employee focusing on the practices exercised in the IS programs.

We exercised prolonged engagement (Guba 1981) in all three cases. For each of the case orga-

nizations, the time between the first and last qualitative data item collected was over 15 months.

Sparse qualitative data regarding two IS programs. Of the qualitative data we

collected, only a minority contained insights regarding automotive org.’s forge components

andmedical org.’s development tools. We believe this to not be a limitation of our research but

rather an effect of the more informal nature of these programs. The tactics to increase credi-

bility described above mitigate this limitation: The prolonged engagement allowed us to get a

more comprehensible view and allowed us time to “check [our] own developing perceptions”

133

(Guba 1981). The additional member checks focused on only the exercised practices allowed

to focus the study members’ attention to potential faults resulting from the sparse qualitative

data regarding these two IS programs.

Identificationofopencommunication. We did not find evidence of significant open

communication in the studied organizations or regarding the analyzed IS programs. We believe

that open communication (at least to a small extent) could exist in the case study organizations

andnot be known to the interviewed employees andnot covered in the documentation and arti-

facts we studied. We propose future research employing quantitative methods (e.g. measuring

the non-code contribution flow) to identify open communication practices and themagnitude

of open communication.

Correctnessoforganizationalmodel. A fault in the extracted organizationalmodel

can significantly impact the resulting patch-flow. For each organization, we verified the correct-

ness of the extracted organizationalmodel using additionalmaterials such as internal telephone

directories, annual and quarterly reports, secondary organizational databases, or with the help

of onsite employees.

Re-organizations over time. Like Guzzi et al. (2012), we observed that the organiza-

tional databases did not contain historical data. Because we only studied the top two levels

(top three for industry org.), we were able to use annual and quarterly reports to verify that

no changes in the high-level structure occurred within our measurement interval. From the

time we started the patch-flow measurement, we looked back for no more than 13 months to

minimize the effects of individual employees switching teams.

Focus on high org. levels. In itself, the focus on only the highest levels of the organi-

zation introduces a new limitation: patch-flow between lower level organizations cannot be

measured. We believe this to not have a big impact on discussing the magnitude of patch-flow

observed: As already discussed in chapter 3, we suspect patch-flow between lower level org.

units to be more common. Thus, demonstrating that patch-flow can happen also across high

levels of an organization is of more relevance. When interpreting the effect of IS practices on

134

IS collaboration, we explicitly discussed the which org. levels we considered when building our

hypotheses.

5.6.2 Transferability

Transferability is the degree to which findings of our inquiries hold validity in other context

(Guba 1981). For our case study, we selected large and established organizations. The setup of

our case study does not allow us to draw immediate conclusions to a whole population of large

and established organizations exercising IS practices. We suggest future research to validate

whether our hypotheses apply to the whole population.

5.6.3 Dependability

Dependability is the degree of stability of the findings and traceability from collected data to

the findings (Guba 1981). We established dependability by providing an audit trail (Guba 1981)

linking each identified code and theme to the unmodified data in our case study database (Yin

2013) with the help of the software tool MaxQDA.

5.6.4 Confirmability

Confirmability is the degree to which we are neutral towards our inquiry and might bias the

findings (Guba 1981). To address confirmability, we performed researcher triangulation. Two

researchers took turns in collecting the data. One researcher was performing the thematic anal-

ysis, however the two remaining researchers provided continuous feedback on the results. In

addition, we addressed confirmability using member checks and peer debriefing as described

in paragraph on establishing credibility.

Case organizations as funding sources. The case organizations partially funded this

research. We do not believe this to have any negative impact on our neutrality and thus the

confirmability of our research. Our key contacts in the organization appeared to be driven by

an honest interest to learn about the status of their IS collaboration. However, it did influence

our sampling: As a consequence of our research partially being funded by the organizations,

all organizations in the sample were organizations with a budget for adopting and running IS.

135

5.7 Conclusion

With this study, we provided the first in-depth case study on IS utilizing quantitative in addi-

tional to qualitative insights.

Patch-flow (and thus IS collaboration) existed in all IS programs we studied - indicating that

OS-style collaboration is possible in organizations developing proprietary (non-OS) software.

However, we found that only a fraction of code contributions to IS projects constitute patch-

flow across the considered levels of the organization.

An increased number of IS practices correlate with more org. units in higher distance being

involved in IS but not necessarily with more patches flowing. To us, this indicates that IS is

capable to enable collaboration among org. units in far distance, where no collaboration is typ-

ically happening: Unlike established software development approaches, IS can scale software

development efforts to the largest organizations.

136

6
Closing

This section closes the thesis by summarizing our results and discussing their consequences

(section 6.1), proposing future research using, extending, or following the work presented in

this thesis (section 6.2), and giving an outlook (section 6.3).

6.1 Results and Consequences

In this section, we summarize the answers to each of our five research questions and discuss the

consequences of these answers.

6.1.1 RQ1: What are the elements of IS software development?

Answer. Four key elements constitute inner source (IS) and are in a relationship with one

another. An open environment is created by opening up development artifacts, inviting exter-

nal contributions, and establishing open communication. Shared cultural values are internal-

ized by individuals within the organization. Empowered by the open environment and shared

cultural values, communities around software form. Project-specific and program-wide com-

munities collaborate in specific IS scenarios. Collaboration in such scenarios can be observed in

open source (OS) as well.

137

Consequences. The identified elements of IS provide a comprehensive definition of what

IS is. On the one hand, this creates clarity for practitioners whowant to adopt IS. It reduces the

risk of IS becoming a “buzzword”. On the other hand for researchers who want to do research

on IS and related phenomena, such a definition provides a solid foundation for their research

work. Also, the elements can provide a lens for practitioners to plan their adoption and provide

a foundation for further work to assess IS.

6.1.2 RQ2: Howdodifferent IS implementationsdifferfromoneanother?

Answer. We found that both IS projects and IS programs differ from one another. IS pro-

grams differ on at least three dimensions (how prevalent IS can become in the organization,

what degree of self-organization individuals are granted, and what the program’s internal eco-

nomics are). IS projects differ on at least two dimensions (i.e. how many parties exercise own-

ership over the projects and what its objective is). We proposed a classification framework that

lays out the classes for each of the dimensions of IS programs and projects.

Consequences. Similar to the identification of elements that constitute IS, the classifica-

tion framework can be considered base research that gives researchers are more solid founda-

tion to conduct their research on IS. Particularly, it lays out variation points of IS programs

and projects. In doing so, it provides researchers with vocabulary to discuss more precisely the

transferability or generalizability of their findings.

The classification framework enables practitioners to decide and plan what classes of IS they

need and want to adopt within their organization. This allows them to choose exactly the

classes of IS that provide an optimum of cost and benefit to them.

6.1.3 RQ3: How to measure IS collaboration within a software develop-

ing organization?

Answer. IS collaboration can be measured by measuring the patch-flow as its proxy. Patch-

flow is the flow of code contribution across organizational boundaries such as org. unit, project,

or cost center boundaries. We presented the patch-flow method for measuring the patch-flow

within an organization. The necessary flow data can be extracted automatically from reposito-

ries and data sources that typically exist in large organizations. We found patch-flow measure-

138

ment using our method to be viable and the results useful to practitioners. It is possible to

measure the flow of (non-code) contributions in analogy to patch-flow.

Consequences. The patch-flowmethod is the first of its kind to measure IS collaboration.

It takes into account the structure of the organization and the organizational distance of collab-

oration org. units. It can serve as a base for additional metrics on IS. Founding suchmetrics on

patch-flow allows to practitioners to easily reuse them in the context of multiple organizations.

In addition, it can serve as an operational definition of IS collaboration and thus help re-

searchers to establish construct validity onwhat they consider IS or not. In addition, patch-flow

(or other types of contribution flow) can serve as an operational definition of where IS collabo-

ration occurs. Some organizations use the term IS to describe initiatives with no collaboration

occurring, while other organizations do not use the term IS despite existing IS collaboration.

6.1.4 RQ4: What is the magnitude of IS collaboration in organizations?

Answer. Patch-flow (and thus IS collaboration) happens with measurable but small mag-

nitude: Only a small fraction of code contributions constitute patch-flow crossing the highest

levels of an organization.

Consequences. We presented the first empirical quantitative evidence of IS collaboration.

This shows that OS-style collaboration within organizations is possible. This indicates the rel-

evance of research into IS (to researchers) and adoption efforts (to practitioners).

The observation that a majority of contributions do not constitute patch-flow raises the

question who (if not outside contributors) is performing this work. This indicates opportu-

nities for future work to identify what the community structures of IS communities are and

whether established models from the OS context apply to IS as well.

6.1.5 RQ5: How do IS practices affect IS collaboration?

Answer. Weproposed a theory on the effect of IS practices on IS collaboration composed of

four hypotheses. We found that higher number of IS practices alone does not necessarily result

in more IS collaboration (hypothesis 1). Significant IS collaboration is possible with rudimen-

tary IS practices if there is a strong need or desire to collaborate (hypothesis 2). IS practices

139

enable collaboration among org. units in high organizational distance (hypothesis 3). Gover-

nance practices and restrictions in project initiation contribute to a small IS program but with

a higher percentage of projects attracting outside patches (hypothesis 4).

Consequences. The hypothesis that more IS practices do not necessarily result in more

IS collaboration has consequences for practitioners adopting and running IS: One cannot just

establish seemingly perfect IS practices and expect IS collaboration. Rather, the hypothesis

thatmore IS collaboration can occurwith rudimentary practices if there is a need to collaborate,

indicates that practitioners should actively identify and integrate into their IS program software

components for which such a need or desire to collaborate exists. This could lead to more IS

collaboration within the organization.

Practitioners benefit from governance practices if they seek to establish a smaller but higher

quality IS program.

Our hypothesis that IS practices enable collaboration among parties in high organizational

distance, indicates that IS practices might be particularly beneficial for practitioners seeking to

establish collaboration among such parties. We theorize that IS scales well to large organiza-

tions.

6.2 Future Research

Based on the findings of this thesis, we identified multiple opportunities for future research.

Primarily, we suggest future work to extend our IS taxonomy, use and build upon the patch-

flowmethod, explore the flow of non-code contributions, tomore systematically transfer open

source findings, models, and theories to the IS context, and to investigate governance of IS

programs more thoroughly.

6.2.1 Extend the IS Taxonomy

We presented an IS taxonomy consisting of a model of elements that constitute IS and a classi-

fication framework for IS projects and programs. We suggest future work to validate, extend,

and build upon it.

140

Validationandextensionofclassificationframework. Our classification frame-

work for IS programs and projects is based on surveyed literature. We utilized it to describe the

IS projects and programs in the case study presented in chapter 5. However, we suggest that

future research should validate the classification framework (for example by surveying a larger

and representative sample of organizations using IS). We believe that such research might also

uncover additional dimensions and classes for classifying IS programs and projects. We encour-

age researchers to extend our classification frameworks.

Alternative IS scenarios. As part of the model of IS elements, we identified specific IS

scenarios in which IS was exercised. We doubt their completeness. We believe many scenarios

for collaboration canbe observed inOS andwithin organizations and suggest future research to

evaluate whether IS collaboration can take place in other scenarios and identify such scenarios.

Measurement instruments andassessment framework. The early phases of IS (IS

adoption) has been extensively covered by the literature that fed into our IS taxonomy. How-

ever, the taxonomy does not yet consider how IS programs evolve. We suggest future work to

develop an assessment ormaturity framework for IS programs based on both our IS taxonomy

and the contribution-flow phenomenon. Such work must include measurement instruments

that allow primarily practitioners to locate their IS program within the resulting framework.

Evolution of IS programs and projects In this thesis, the evolution of IS programs

and projects was not a significant lense: Our taxonomy helps to understand and classify the

current state of an IS program. It is unclear how IS programs and IS projects evolve and which

similarities they share with OS. We propose future research to investigate models describing

and predicting the evolution of IS programs and projects.

6.2.2 Build upon Patch-FlowMethod

We believe the insights from study presenting the patch-flowmethod and the case study apply-

ing the it suggest further research. In particular, we propose to develop management metrics

for IS programs and projects and survey the collaboration in known IS programs.

141

Managementmetrics. Patch-flowmeasurement provides primitive data about the IS col-

laboration. We encourage researchers to use such data to theorize about and validate metrics

for practitioners’ information needs regarding IS (e.g. models for evaluating the performance

of IS projects, incentive systems for IS).

Survey of inner source collaboration. In this thesis, we explored the structure and

magnitude of IS collaboration (using patch-flow as a proxy). We suggest future research to val-

idate these hypotheses and their transferability to other cases. This could for example be done

by surveying a diverse and representative sample of IS programs, identifying their IS practices,

and measuring the patch-flow there.

6.2.3 Explore Non-Code Contribution-Flow and Open Communication

Patch-flow analysis focuses on collaboration that happens directly on code. As we discussed in

this thesis, non-code contribution is an important element of IS collaboration as well.

Non-code contribution flow. In addition to a code contribution, an individual may

contribute to IS by reporting a bug, reviewing the contribution of somebody else, taking part

in a mailing list discussion or by other means. We suggest future research to explore flow of

non-code contributions as well. Further case study research could explore the magnitude of

non-code contribution flow (in comparison to patch-flow) and the influences IS practices have

on it.

We discussed that a limitation of the studies presented in this thesis is, that the prevalence

of open communication might have been estimated to low because we were purely seeking to

uncover instances of open communication using qualitative data analysis. Analyzing the non-

code contribution-flow could mitigate this limitation.

Open communication mechanisms. Even considering this limitation, we had expected

more open communication practices in the studied case organizations. This could suggest that

established open communication mechanisms and tools from the OS context are not working

well within organizations. We suggest future research to identify challenges to open commu-

nication within organizations and attributes of practices and tools that benefit adoption and

acceptance of open communication within organizations.

142

6.2.4 Systematically Transfer Open Source Insights

Open source is in an inherent relationship with IS (we defined IS as the use of OS practices

within organizations). We suggest further research into which models, methods, taxonomies –

generally, which knowledge – from an OS context, can be applied within an IS context as well.

Community structure. For example, we observed that only a small fraction of all code

contributions to an IS project constitute patch-flow across the highest levels of an organization.

A potential explanation is that theOnionmodel (Nakakoji et al. 2002) describing the structure

ofOS communities, applies to IS communities as well. Following this explanation, a small core

team of developers would perform the majority of work on the IS project and patch-flow then

would most happen when individuals not in the core team contribution code. Recent papers

have looked at the motivations of peripheral developers (for example Barcomb et al. 2019) and

it is possible this research could be extended to an IS context.

Other similarities to open source. To generate additional insights about IS at rela-

tively low cost, we encourage researchers to replicate studies that were performed in anOS con-

text within an IS context. As a consequence, the research community can learn how similar OS

and IS actually are, where differences between them lie and what the differences’ consequences

are. The practitioner community can benefit from learning just whatOS practices and insights,

still hold true in an IS context and adapting their IS programs accordingly – potentially leading

to more successful IS collaboration.

6.2.5 Investigate Program Governance

In this thesis, we identified multiple topics regarding the governance of IS programs that war-

rant additional research.

IS license. In our multiple-case case study, we found an organization that established an IS

license to make explicit the rights and obligations of organizational units and legal entities of

the organization when using and contributing to IS software. We suggest further research to

identify what elements an IS license should consist of, how it is different from the licenses used

in an OS context, and how practitioners can define their own IS license.

143

Incentive system and career paths. Organizations have an interest in fostering IS col-

laboration (as it can lead to more efficient software development) and retaining talented soft-

ware developers. We believe IS and themeasurementmethods this thesis presented can be used

by human resource professionals to provide incentive systems well aligned with an organiza-

tion’s goals and career paths the reward individuals participating in IS collaboration. We sug-

gest future research to develop and validate such incentive systems and career paths.

6.3 Outlook

The research presented in this thesis is basic research: During the literature survey (chapter 2),

we identified a small but steady stream of scientific literature and practitioner reports on IS

that are the foundation of our IS taxonomy. We developed a method to measure IS collab-

oration (chapter 3, chapter 4), applied it in a multiple-case case study (chapter 5) with three

industry organizations and delivered the first in-depth quantitative study of IS collaboration.

We found IS collaboration to happen in all studied organizations to low but clearly measurable

magnitude. All this indicates to us that IS is still a young research and practitioner discipline.

While ourwork contributes to amore solid foundation for IS, the future research section above

clearly shows thatmanyquestions still remain unanswered. Thus, we encourage other researchers

to look into the IS phenomenon from the perspective of their fields.

Such further research will be worthwhile. The results of this thesis indicate that IS can have

a significant impact on the software industry: Our taxonomy (chapter 2) and the diversity of

IS practices observed in our multiple-case case study (chapter 5) show that there are multiple

ways to design and run IS programs successfully. As a consequence, the IS approach fits a di-

verse (and thus potentially large) set of organizations. In addition, we found that IS practices

enable collaboration among parties in high distance within an organization (chapter 5). In that,

IS is similar to its cousin OS and delivers something, other established software development

approaches cannot deliver: IS scales software development efforts to the largest organizations.

144

References

Gary Anthes. 2005. Software Reuse: Making it Work - DTE Energy may have cracked the

cultural side of reusaable software. (2005). http://www.computerworld.com/article/

2556383/app-development/software-reuse---making-it-work.html

Matt Asay. 2007. Microsoft Office experiments with open source (de-

velopment). (2007). http://archive.oreilly.com/pub/post/

microsoft{_}office{_}experiments{_}w.html

Ann Barcomb, Andreas Kaufmann, Dirk Riehle, Klaas-Jan Stol, and Brian Fitzgerald. 2019.

Uncovering the Periphery: A Qualitative Survey of Episodic Volunteering in Free/Libre and

Open Source Software Communities. IEEE Transactions on Software Engineering (2019), 1–1.

https://doi.org/10.1109/TSE.2018.2872713

Jörg Bartholdt and Detlef Becker. 2012. Scope extension of an existing product line. In Pro-

ceedings of the 16th International Software Product Line Conference on - SPLC ’12 -volume

1 (SPLC ’12). ACM Press, New York, New York, USA, 275. https://doi.org/10.1145/

2362536.2362573

K Beck. 1999. Embracing change with extreme programming. Computer 32, 10 (oct 1999),

70–77. https://doi.org/10.1109/2.796139

Andrew Begel, Khoo Yit Phang, and Thomas Zimmermann. 2010. Codebook: discovering

and exploiting relationships in software repositories. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - ICSE ’10, Vol. 1. ACM Press, New York,

New York, USA, 125. https://doi.org/10.1145/1806799.1806821

Douglas G Bonett and Thomas A Wright. 2000. Sample size requirements for estimating

pearson, kendall and spearman correlations. Psychometrika 65, 1 (mar 2000), 23–28. https:

//doi.org/10.1007/BF02294183

145

http://www.computerworld.com/article/2556383/app-development/software-reuse---making-it-work.html
http://www.computerworld.com/article/2556383/app-development/software-reuse---making-it-work.html
http://archive.oreilly.com/pub/post/microsoft{_}office{_}experiments{_}w.html
http://archive.oreilly.com/pub/post/microsoft{_}office{_}experiments{_}w.html
https://doi.org/10.1109/TSE.2018.2872713
https://doi.org/10.1145/2362536.2362573
https://doi.org/10.1145/2362536.2362573
https://doi.org/10.1109/2.796139
https://doi.org/10.1145/1806799.1806821
https://doi.org/10.1007/BF02294183
https://doi.org/10.1007/BF02294183

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qual-

itative Research in Psychology 3, 2 (jan 2006), 77–101. https://doi.org/10.1191/

1478088706qp063oa

MaximilianCapraro. 2013.Towards a representative anddiverse analysis of issue-tracker related

code and processmetrics. MasterThesis. Friedrich-Alexander-University Erlangen-Nuernberg.

Maximilian Capraro, Michael Dorner, and Dirk Riehle. 2018. The patch-flow method for

measuring inner source collaboration. In Proceedings of the 15th International Conference on

Mining Software Repositories -MSR ’18. IEEE, ACMPress, New York, New York, USA, 515–

525. https://doi.org/10.1145/3196398.3196417

MaximilianCapraro andDirkRiehle. 2017. Inner SourceDefinition, Benefits, andChallenges.

Comput. Surveys 49, 4 (dec 2017), 1–36. https://doi.org/10.1145/2856821

NoelCarroll, LorraineMorgan, andKieranConboy. 2018. Examining the Impact ofAdopting

Inner Source Software Practices. In Proceedings of the 14th International Symposium on Open

Collaboration - OpenSym ’18. ACM Press, New York, New York, USA, 1–7. https://doi.

org/10.1145/3233391.3233530

Herbert H Clark and Susan E Brennan. 1991. Grounding in communication. American Psy-

chological Association, 222–233.

Danese Cooper and Klaas-Jan Stol. 2018. Adopting InnerSource: Principles and Case Studies.

O’Reilly Media, Inc.

Gabriella C B Costa, Francisco Santana, Andréa M Magdaleno, and Cláudia M L Werner.

2014. Monitoring Collaboration in Software Processes Using Social Networks. In CYTED-

RITOS International Workshop on Groupware. Springer, 89–96. https://doi.org/10.

1007/978-3-319-10166-8_8

Kevin Crowston and James Howison. 2005. The social structure of free and open source

software development. (2005). https://firstmonday.org/article/view/1207/1127

Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2012. Free/Libre

open-source software development: What we know and what we do not know. Comput.

Surveys 44, 2 (feb 2012), 1–35. https://doi.org/10.1145/2089125.2089127

146

https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/3196398.3196417
https://doi.org/10.1145/2856821
https://doi.org/10.1145/3233391.3233530
https://doi.org/10.1145/3233391.3233530
https://doi.org/10.1007/978-3-319-10166-8_8
https://doi.org/10.1007/978-3-319-10166-8_8
https://firstmonday.org/article/view/1207/1127
https://doi.org/10.1145/2089125.2089127

Daniela S Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic Synthesis in Soft-

ware Engineering. In 2011 International Symposium on Empirical Software Engineering and

Measurement. IEEE, IEEE, 275–284. https://doi.org/10.1109/ESEM.2011.36

Laura Dabbish, Colleen Stuart, Jason Tsay, and JimHerbsleb. 2012. Social coding in GitHub:

transparency and collaboration in an open software repository. In Proceedings of the ACM

2012 conference on Computer Supported Cooperative Work - CSCW ’12 (CSCW ’12). ACM

Press, New York, New York, USA, 1277. https://doi.org/10.1145/2145204.2145396

Jamie Dinkelacker and P Garg. 2001. Corporate source: Applying open source concepts to a

corporate environment (Position Paper). 1stWorkshop on Open Source Software Engineering

(2001). https://www.hpl.hp.com/techreports/2001/HPL-2001-135.pdf

Jamie Dinkelacker, Pankaj K Garg, Rob Miller, and Dean Nelson. 2002. Progressive open

source. In Proceedings of the 24th international conference on Software engineering - ICSE ’02.

ACM, ACM Press, New York, New York, USA, 177. https://doi.org/10.1145/581339.

581363

Kathleen M. Eisenhardt. 1989. Building Theories from Case Study Research. Academy of

Management Review 14, 4 (oct 1989), 532–550. https://doi.org/10.5465/amr.1989.

4308385

Roy Fielding. 2000. Architectural Styles and the Design of Network-based Software Archi-

tecture. PhD Thesis. University of California, Irvine. https://www.ics.uci.edu/

{~}fielding/pubs/dissertation/fielding{_}dissertation.pdf

Brian Fitzgerald. 2006. The Transformation of Open Source Software. MIS Q. 30, 3 (sep

2006), 587–598. http://dl.acm.org/citation.cfm?id=2017296.2017298

Martin Fowler. 1997a. Analysis patterns: reusable objectmodels. Addison-Wesley Professional.

Martin Fowler. 1997b. Dealing with properties. (1997). https://martinfowler.com/

apsupp/properties.pdf

Steve Fox. 2007. IBM Internal Open Source Bazaar. (2007).

147

https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1145/2145204.2145396
https://www.hpl.hp.com/techreports/2001/HPL-2001-135.pdf
https://doi.org/10.1145/581339.581363
https://doi.org/10.1145/581339.581363
https://doi.org/10.5465/amr.1989.4308385
https://doi.org/10.5465/amr.1989.4308385
https://www.ics.uci.edu/{~}fielding/pubs/dissertation/fielding{_}dissertation.pdf
https://www.ics.uci.edu/{~}fielding/pubs/dissertation/fielding{_}dissertation.pdf
http://dl.acm.org/citation.cfm?id=2017296.2017298
https://martinfowler.com/apsupp/properties.pdf
https://martinfowler.com/apsupp/properties.pdf

Javier Franch Gutiérrez, Angelo Susi, Maria Carmela Annosi, Claudia Patricia Ayala

Mart\’\inez, Ruediger Glott, Daniel Gross, Ron Kenett, Fabio Mancinelli, Pop Ramsany,

Cedric Thomas, and Others. 2013. Managing risk in open source software adoption. In IC-

SOFT 2013: Proceedings of the 8th International Joint Conference on Software Technologies.

258–264.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional.

GaryGaughan, Brian Fitzgerald, LorraineMorgan, andMaha Shaikh. 2007. An examination

of the use of inner source in multinational corporations. In 1st OPAALSWorkshop.

Gary Gaughan, Brian Fitzgerald, and Maha Shaikh. 2009. An Examination of the Use of

Open Source Software Processes as a Global Software Development Solution for Commer-

cial Software Engineering. In 2009 35th Euromicro Conference on Software Engineering and

Advanced Applications. IEEE, 20–27. https://doi.org/10.1109/SEAA.2009.86

Ron Goldman and Richard P Gabriel. 2005. Innovation happens elsewhere: open source as

business strategy. Morgan Kaufmann.

Google-Blog. 2006. Google’s 20 percent time in action. (2006). http://googleblog.

blogspot.de/2006/05/googles-20-percent-time-in-action.html

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. 2008. Measuring Developer

Contribution fromSoftwareRepositoryData. InProceedings of the 2008 InternationalWork-

ing Conference onMining Software Repositories (MSR ’08). ACM,New York, NY, USA, 129–

132. https://doi.org/10.1145/1370750.1370781

EgonGGuba. 1981. Criteria for assessing the trustworthiness of naturalistic inquiries. Educa-

tional Technology Research and Development 29, 2 (1981), 75–91.

Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How Many Interviews Are Enough?

An Experiment with Data Saturation and Variability. Field Methods 18, 1 (feb 2006), 59–82.

https://doi.org/10.1177/1525822X05279903

148

https://doi.org/10.1109/SEAA.2009.86
http://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html
http://googleblog.blogspot.de/2006/05/googles-20-percent-time-in-action.html
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1177/1525822X05279903

Vijay KGurbani, Anita Garvert, and James DHerbsleb. 2005. A Case Study of Open Source

Tools and Practices in a Commercial Setting. In Proceedings of the Fifth Workshop on Open

Source Software Engineering (5-WOSSE). ACM, New York, NY, USA, 1–6. https://doi.

org/10.1145/1082983.1083264

Vijay K Gurbani, Anita Garvert, and James D Herbsleb. 2006. A case study of a corpo-

rate open source development model. In Proceeding of the 28th international conference on

Software engineering - ICSE ’06 (ICSE ’06). ACM Press, New York, New York, USA, 472.

https://doi.org/10.1145/1134285.1134352

Vijay K Gurbani, Anita Garvert, and James D Herbsleb. 2010. Managing a corporate open

source software asset. Commun. ACM 53, 2 (feb 2010), 155. https://doi.org/10.1145/

1646353.1646392

Anja Guzzi, Andrew Begel, Jessica K Miller, and Krishna Nareddy. 2012. Facilitating en-

terprise software developer communication with CARES. In 2012 28th IEEE International

Conference on Software Maintenance (ICSM). IEEE, IEEE, 527–536. https://doi.org/

10.1109/ICSM.2012.6405317

Gary Hamel. 2008. The Future of Management. Vol. 16. Harvard Business School Press.

hrmid.2008.04416fae.001 pages. https://doi.org/10.1108/hrmid.2008.04416fae.

001

Nikolay Harutyunyan. 2019. Corporate Open Source Governance of Software Supply Chains.

Ph.D. Dissertation.

Nikolay Harutyunyan and Dirk Riehle. 2019. Getting started with open source governance

and compliance in companies. In Proceedings of the 15th International Symposium on Open

Collaboration - OpenSym ’19 (OpenSym ’19). ACM Press, New York, New York, USA, 1–10.

https://doi.org/10.1145/3306446.3340815

Constantin Hasler. 2017. Implementierung und Performance-Optimierung von SCM

Adaptern. Master Thesis. Friedrich-Alexander-University Erlangen-Nuernberg.

Hillside-Group. 2010. How toHold aWritersWorkshop. (2010). http://hillside.net/

conferences/plop/235-how-to-hold-a-writers-workshop

149

https://doi.org/10.1145/1082983.1083264
https://doi.org/10.1145/1082983.1083264
https://doi.org/10.1145/1134285.1134352
https://doi.org/10.1145/1646353.1646392
https://doi.org/10.1145/1646353.1646392
https://doi.org/10.1109/ICSM.2012.6405317
https://doi.org/10.1109/ICSM.2012.6405317
https://doi.org/10.1108/hrmid.2008.04416fae.001
https://doi.org/10.1108/hrmid.2008.04416fae.001
https://doi.org/10.1145/3306446.3340815
http://hillside.net/conferences/plop/235-how-to-hold-a-writers-workshop
http://hillside.net/conferences/plop/235-how-to-hold-a-writers-workshop

DannyHolten. 2006. Hierarchical Edge Bundles: Visualization ofAdjacencyRelations inHi-

erarchical Data. IEEE Transactions on Visualization and Computer Graphics 12, 5 (sep 2006),

741–748. https://doi.org/10.1109/TVCG.2006.147

Martin Höst, Klaas-Jan Stol, and Alma Oručević-Alagić. 2014. Inner Source Project Man-

agement. In Software Project Management in a ChangingWorld, Günther Ruhe and Claes

Wohlin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 343–369. https://doi.

org/10.1007/978-3-642-55035-5_14

Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle. 2015.

From Developer Networks to Verified Communities: A Fine-Grained Approach. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering. IEEE Press, IEEE,

563–573. https://doi.org/10.1109/ICSE.2015.73

Eirini Kalliamvakou, GeorgiosGousios, Diomidis Spinellis, andNancy Pouloudi. 2009. Mea-

suring developer contribution from software repository data. Proceedings of the 2009mediter-

ranean conference on information systems - MCIS ’09 (2009). https://aisel.aisnet.

org/mcis2009/55

P.B. Kruchten. 1995. The 4+1 ViewModel of architecture. IEEE Software 12, 6 (1995), 42–50.

https://doi.org/10.1109/52.469759

Johan Linåker,Maria Krantz, andMartinHöst. 2014. On Infrastructure for Facilitation of In-

ner Source in Small Development Teams. In Product-Focused Software Process Improvement,

Andreas Jedlitschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Männistö, Jürgen Münch, and

Mikko Raatikainen (Eds.). Lecture Notes in Computer Science, Vol. 8892. Springer Interna-

tional Publishing, 149–163. https://doi.org/10.1007/978-3-319-13835-0_11

Juho Lindman, Mikko Riepula, Matti Rossi, and Pentti Marttiin. 2013. Open Source Tech-

nology in Intra-Organisational Software Development—Private Markets or Local Libraries.

InManaging Open Innovation Technologies, Jenny S Z Eriksson Lundström, Mikael Wiberg,

StefanHrastinski,Mats Edenius, and Pär J Ågerfalk (Eds.). Springer BerlinHeidelberg, Berlin,

Heidelberg, 107–121. https://doi.org/10.1007/978-3-642-31650-0_7

150

https://doi.org/10.1109/TVCG.2006.147
https://doi.org/10.1007/978-3-642-55035-5_14
https://doi.org/10.1007/978-3-642-55035-5_14
https://doi.org/10.1109/ICSE.2015.73
https://aisel.aisnet.org/mcis2009/55
https://aisel.aisnet.org/mcis2009/55
https://doi.org/10.1109/52.469759
https://doi.org/10.1007/978-3-319-13835-0_11
https://doi.org/10.1007/978-3-642-31650-0_7

JuhoLindman,Matti Rossi, and PenttiMarttiin. 2008. ApplyingOpen SourceDevelopment

Practices Inside a Company. InOpen SourceDevelopment, Communities andQuality, Barbara

Russo, ErnestoDamiani, ScottHissam, BjörnLundell, andGiancarlo Succi (Eds.). IFIP–The

International Federation for InformationProcessing, Vol. 275. SpringerUS, Boston,MA, 381–

387. https://doi.org/10.1007/978-0-387-09684-1_36

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2010. Open Source Technology Changes

Intra-Organizational Systems Development-A Tale of Two Companies. In 18th European

Conference on Information Systems.

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf, and Sjaak Brinkkem-

per. 2016. The Use and Effectiveness of User Stories in Practice. In International working

conference on requirements engineering: Foundation for software quality. Springer, 205–222.

https://doi.org/10.1007/978-3-319-30282-9_14

Gregory Madey, Vincent Freeh, and Renee Tynan. 2002. The open source software develop-

ment phenomenon: An analysis based on social network theory. InAMCIS 2002Proceedings.

247.

Guy Martin and Andrew Aitken. 2012. Inner Sourcing - Community Development Prac-

tices in Corporate IT. (2012). https://www.slideshare.net/blackducksoftware/

innersource-webinar-series

Guy Martin and Aaron Lippold. 2011. Forge.mil: A Case Study for Utilizing Open Source

Methodologies Inside of Government. InOpen Source Systems: Grounding Research, Scott A

Hissam, Barbara Russo,Manoel G deMendoncaNeto, and Fabio Kon (Eds.). IFIPAdvances

in Information and Communication Technology, Vol. 365. Springer Berlin Heidelberg, 334–

337. https://doi.org/10.1007/978-3-642-24418-6_28

Ken Martin and Bill Hoffman. 2007. An Open Source Approach to Developing Software in

a Small Organization. IEEE Software 24, 1 (jan 2007), 46–53. https://doi.org/10.1109/

MS.2007.5

Catharina Melian. 2007. Progressive Open Source: The construction of a development project at

Hewlett-Packard. Ph.D. Dissertation.

151

https://doi.org/10.1007/978-0-387-09684-1_36
https://doi.org/10.1007/978-3-319-30282-9_14
https://www.slideshare.net/blackducksoftware/innersource-webinar-series
https://www.slideshare.net/blackducksoftware/innersource-webinar-series
https://doi.org/10.1007/978-3-642-24418-6_28
https://doi.org/10.1109/MS.2007.5
https://doi.org/10.1109/MS.2007.5

Catharina Melian, Cathy Burles Ammirati, Pankaj Garg, and Guje Sevon. 2002. Building

Networks of Software Communities in a Large Corporation. Technical Report HPL-2002-12.

HP Laboratories Palo Alto. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.10.2987{&}rep=rep1{&}type=pdf

Catharina Melian and Magnus Mähring. 2008. Lost and Gained in Translation: Adoption

of Open Source Software Development at Hewlett-Packard. In Open Source Development,

Communities and Quality, Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell,

and Giancarlo Succi (Eds.). IFIP – The International Federation for Information Processing,

Vol. 275. Springer US, 93–104. https://doi.org/10.1007/978-0-387-09684-1_8

Andrew Meneely and Laurie Williams. 2011. Socio-technical developer networks: should we

trust our measurements?. In Proceeding of the 33rd international conference on Software en-

gineering - ICSE ’11. ACM, ACM Press, New York, New York, USA, 281. https://doi.

org/10.1145/1985793.1985832

Aron Metzig. 2019. Implementation of a Gitlab Adapter and the Evolution if its Interface.

Master Thesis. Friedrich-Alexander-University Erlangen-Nuernberg.

Microsoft. 2008. Open Source atMicrosoft - Bringing the Open Source Approach In-House.

(2008).

LorraineMorgan, Joseph Feller, and Patrick Finnegan. 2011. Exploring inner source as a form

of intraorganisational open innovation. In Proceedings of the 19th European Conference on

Information Systems.

KumiyoNakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yunwen

Ye. 2002. Evolution patterns of open-source software systems and communities. In Proceed-

ings of the internationalworkshop onPrinciples of software evolution - IWPSE ’02 (IWPSE ’02).

ACM Press, New York, New York, USA, 76. https://doi.org/10.1145/512035.512055

Andreas Neus and Philipp Scherf. 2005. Opening minds: Cultural change with the intro-

duction of open-source collaboration methods. IBM Systems Journal 44, 2 (2005), 215–225.

https://doi.org/10.1147/sj.442.0215

152

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.2987{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.2987{&}rep=rep1{&}type=pdf
https://doi.org/10.1007/978-0-387-09684-1_8
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/1985793.1985832
https://doi.org/10.1145/512035.512055
https://doi.org/10.1147/sj.442.0215

Patrick Oor, René Krikhaar, and I C T NoviQ. 2008. Balancing Technology, Organization,

andProcess in Inner Source.DagstuhlWorkshop 08142: Combining the advantages of product

lines and open source (2008), 1548.

Andy Oram. 2015. Getting started with inner source. O’Reilly Media, Inc.

Tim O’Reilly. 2000. Archived email discussion on Open Source and OpenGL. (2000).

https://web.archive.org/web/20170104150601/http://archive.oreilly.com/

pub/a/oreilly/ask{_}tim/2000/opengl{_}1200.html

Martin Pinzger, NachiappanNagappan, and BrendanMurphy. 2008. Can developer-module

networks predict failures?. In Proceedings of the 16th ACM SIGSOFT International Sympo-

sium on Foundations of software engineering - SIGSOFT ’08/FSE-16. ACM, ACMPress, New

York, New York, USA, 2. https://doi.org/10.1145/1453101.1453105

Daniele S Plantera. 2018. Measuring Patch-Flow at an Automotive Company. Master Thesis.

Friedrich-Alexander-University Erlangen-Nuernberg.

Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology& Policy 12, 3 (sep

1999), 23–49. https://doi.org/10.1007/s12130-999-1026-0

Ralf Reussner andWilhelmHasselbring. 2006. Handbuch der Software-Architektur. dpunkt-

Verlag.

Dirk Riehle. 2000. Framework design: A role modeling approach. Ph.D. Dissertation.

Dirk Riehle. 2007. The Economic Motivation of Open Source Software: Stakeholder Per-

spectives. Computer 40, 4 (apr 2007), 25–32. https://doi.org/10.1109/MC.2007.147

Dirk Riehle. 2009. The Commercial Open Source Business Model. In Value Creation in

E-Business Management, Matthew L Nelson, Michael J Shaw, and Troy J Strader (Eds.). Lec-

ture Notes in Business Information Processing, Vol. 36. Springer Berlin Heidelberg, 18–30.

https://doi.org/10.1007/978-3-642-03132-8_2

Dirk Riehle. 2012. The single-vendor commercial open course business model. Information

Systems and e-Business Management 10, 1 (mar 2012), 5–17. https://doi.org/10.1007/

s10257-010-0149-x

153

https://web.archive.org/web/20170104150601/http://archive.oreilly.com/pub/a/oreilly/ask{_}tim/2000/opengl{_}1200.html
https://web.archive.org/web/20170104150601/http://archive.oreilly.com/pub/a/oreilly/ask{_}tim/2000/opengl{_}1200.html
https://doi.org/10.1145/1453101.1453105
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1109/MC.2007.147
https://doi.org/10.1007/978-3-642-03132-8_2
https://doi.org/10.1007/s10257-010-0149-x
https://doi.org/10.1007/s10257-010-0149-x

Dirk Riehle. 2015. The Five Stages of Open Source Volunteering. In Crowdsourcing, Wei

Li, Michael Huhn, andWei-Tek Tsai (Eds.). Springer, 25–38. https://doi.org/10.1007/

978-3-662-47011-4_2

Dirk Riehle. 2016. An Example Charter for Inner Source Programs. Technical Report.

Friedrich-Alexander-University Erlangen-Nürnberg.

Dirk Riehle, Maximilian Capraro, Detlef Kips, and Lars Horn. 2016. Inner Source in

Platform-Based Product Engineering. IEEE Transactions on Software Engineering 42, 12 (dec

2016), 1162–1177. https://doi.org/10.1109/TSE.2016.2554553

Dirk Riehle, John Ellenberger, Tamir Menahem, Boris Mikhailovski, Yuri Natchetoi, Barak

Naveh, and Thomas Odenwald. 2009. Open Collaboration within Corporations Using Soft-

ware Forges. IEEESoftware 26, 2 (mar 2009), 52–58. https://doi.org/10.1109/MS.2009.

44

Jason E Robbins. 2007. Adopting Open Source Software Engineering (OSSE) Practices by

Adopting OSSE Tools. In Perspectives on Free and Open Source Software, Joseph Feller, Brian

Fitzgerald, Scott Hissam, and Karim Lakhani (Eds.). The MIT Press, 245–264. https://

doi.org/10.7551/mitpress/5326.003.0019

Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. 2012. Case Study Research in

Software Engineering. In Guidelines and examples. John Wiley & Sons, Inc., Hoboken, NJ,

USA. https://doi.org/10.1002/9781118181034

Andreas Schreiber,RobertoGaloppini,MichaelMeinel, andTobias Schlauch. 2014. AnOpen

Source Software Directory for Aeronautics and Space. In Proceedings of The International

Symposium on Open Collaboration - OpenSym ’14. ACM, ACM Press, New York, New York,

USA, 1–7. https://doi.org/10.1145/2641580.2641630

Michael Schwind and Christian Wegmann. 2008. SVNNAT: Measuring Collaboration in

Software Development Networks. In 2008 10th IEEE Conference on E-Commerce Technology

and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services. IEEE,

IEEE, 97–104. https://doi.org/10.1109/CECandEEE.2008.100

154

https://doi.org/10.1007/978-3-662-47011-4_2
https://doi.org/10.1007/978-3-662-47011-4_2
https://doi.org/10.1109/TSE.2016.2554553
https://doi.org/10.1109/MS.2009.44
https://doi.org/10.1109/MS.2009.44
https://doi.org/10.7551/mitpress/5326.003.0019
https://doi.org/10.7551/mitpress/5326.003.0019
https://doi.org/10.1002/9781118181034
https://doi.org/10.1145/2641580.2641630
https://doi.org/10.1109/CECandEEE.2008.100

Anthony Senyard and Martin Michlmayr. 2004. How to Have a Successful Free Software

Project. In 11th Asia-Pacific Software Engineering Conference. IEEE, 84–91. https://doi.

org/10.1109/APSEC.2004.58

Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. 2002. A framework for cre-

ating hybrid-open source software communities. Information Systems Journal 12, 1 (jan 2002),

7–25. https://doi.org/10.1046/j.1365-2575.2002.00116.x

Janice Singer and N.G. Vinson. 2002. Ethical issues in empirical studies of software engi-

neering. IEEE Transactions on Software Engineering 28, 12 (dec 2002), 1171–1180. https:

//doi.org/10.1109/TSE.2002.1158289

Phillip Smith andChris Garber-Brown. 2007. Traveling theOpenRoad: UsingOpen Source

Practices to Transform Our Organization. In AGILE 2007 (AGILE 2007). IEEE, 156–161.

https://doi.org/10.1109/AGILE.2007.65

Andrew Stellman and Jennifer Greene. 2009. Beautiful Teams: Inspiring and Cautionary

Tales from Veteran Team Leaders. O’Reilly Media, Inc.

Klaas-Jan Stol. 2011. Supporting product development with software from the bazaar. Ph.D.

Dissertation.

Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald. 2014.

Key factors for adopting inner source. ACM Transactions on Software Engineering and

Methodology 23, 2 (apr 2014), 1–35. https://doi.org/10.1145/2533685

Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. 2011. A com-

parative study of challenges in integrating Open Source Software and Inner Source Software.

Information and Software Technology 53, 12 (dec 2011), 1319–1336. https://doi.org/10.

1016/j.infsof.2011.06.007

Klaas-Jan Stol and Brian Fitzgerald. 2014. Research protocol for a case study of crowdsourcing

software development. Technical Report. University of Limerick, Lero.

Klaas-Jan Stol andBrian Fitzgerald. 2015. Inner Source–AdoptingOpen SourceDevelopment

Practices inOrganizations: ATutorial. IEEESoftware 32, 4 (jul 2015), 60–67. https://doi.

org/10.1109/MS.2014.77

155

https://doi.org/10.1109/APSEC.2004.58
https://doi.org/10.1109/APSEC.2004.58
https://doi.org/10.1046/j.1365-2575.2002.00116.x
https://doi.org/10.1109/TSE.2002.1158289
https://doi.org/10.1109/TSE.2002.1158289
https://doi.org/10.1109/AGILE.2007.65
https://doi.org/10.1145/2533685
https://doi.org/10.1016/j.infsof.2011.06.007
https://doi.org/10.1016/j.infsof.2011.06.007
https://doi.org/10.1109/MS.2014.77
https://doi.org/10.1109/MS.2014.77

DavidRThomas. 2006. AGeneral InductiveApproach forAnalyzingQualitative Evaluation

Data. American Journal of Evaluation 27, 2 (jun 2006), 237–246. https://doi.org/10.

1177/1098214005283748

Richard Torkar, PauMinoves, and Janina Garrigós. 2011. Adopting Free/Libre/Open Source

Software Practices, Techniques andMethods for Industrial Use. Journal of the Association for

Information Systems 12, 1 (jan 2011), 88–122. https://doi.org/10.17705/1jais.00252

Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2014. Collaboration in open-source

projects: myth or reality?. In Proceedings of the 11th Working Conference on Mining Soft-

ware Repositories - MSR 2014. ACM, ACM Press, New York, New York, USA, 304–307.

https://doi.org/10.1145/2597073.2597093

Frank van der Linden. 2009. Applying open source software principles in product lines. Cepis

Upgrade - The european journal for the informatics professional 10 (2009), 32–41.

Frank van der Linden. 2013. Open Source Practices in Software Product Line Engineering.

In Software Engineering, Andrea De Lucia and Filomena Ferrucci (Eds.). Lecture Notes in

Computer Science, Vol. 7171. Springer Berlin Heidelberg, 216–235. https://doi.org/10.

1007/978-3-642-36054-1_8

Frank van der Linden, Björn Lundell, and Pentti Marttiin. 2009. Commodification of In-

dustrial Software: A Case for Open Source. IEEE Software 26, 4 (jul 2009), 77–83. https:

//doi.org/10.1109/MS.2009.88

Padmal Vitharana, Julie King, and Helena Shih Chapman. 2010. Impact of Internal

Open Source Development on Reuse: Participatory Reuse in Action. Journal of Man-

agement Information Systems 27, 2 (oct 2010), 277–304. https://doi.org/10.2753/

MIS0742-1222270209

Jane Webster and Richard T Watson. 2002. Analyzing the past to prepare for the future:

Writing a literature review. MIS quarterly 26, 2 (2002), xiii—-xxiii.

JaccoWesselius. 2008. The Bazaar inside theCathedral: BusinessModels for InternalMarkets.

IEEE Software 25, 3 (may 2008), 60–66. https://doi.org/10.1109/MS.2008.79

156

https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.17705/1jais.00252
https://doi.org/10.1145/2597073.2597093
https://doi.org/10.1007/978-3-642-36054-1_8
https://doi.org/10.1007/978-3-642-36054-1_8
https://doi.org/10.1109/MS.2009.88
https://doi.org/10.1109/MS.2009.88
https://doi.org/10.2753/MIS0742-1222270209
https://doi.org/10.2753/MIS0742-1222270209
https://doi.org/10.1109/MS.2008.79

James A Whittaker, Jason Arbon, and Jeff Carollo. 2012. How Google tests software. Addison-

Wesley.

Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering. In Proceedings of the 18th International Conference on Evalu-

ation and Assessment in Software Engineering - EASE ’14. Citeseer, ACM Press, New York,

New York, USA, 1–10. https://doi.org/10.1145/2601248.2601268

Robert K Yin. 2013. Case study research: Design and methods. Sage publications.

157

https://doi.org/10.1145/2601248.2601268

This is version 2078b873415cf78aaea60fc8e555df6613d14477 generated on Friday 5th June, 2020.

A
Claimed Benefits of Inner Source Adoption

This section summarizes the benefits practitioners observed or expect from inner source (IS)

adoption. We used the literature selected as part of the literature survey study presented in

chapter 2 and followed the approach presented by Thomas (2006) to identify the benefits. A

detailed description of the approach and related work can be found in Capraro and Riehle

(2017).

The surveyed literature presented IS benefits from the idiosyncratic perspective of different

organizations. Some of the reports validated the observed IS benefits. Van der Linden et al.

(2009) monitored Philips’ process metrics to measure a time-to-market increase they attribute

to inner source. Riehle et al. (2009) performed a survey with SAP developers to validate that

IS helped them ot overcome intra-organizational boundaries. However, most of the surveyed

literature neither validated the observed IS benefits nor discussed their generalizability. Thus,

the presented IS benefits should be treated as claimed benefits and not as generally valid truth.

We suggest further research to validate the reported IS benefits, evaluate their generalizability,

and estimate the extent to which they affect the organizations adopting IS.

Table A.1 gives an overview of the seven identified benefits. Six of these benefits aggregate

more fine-grained benefits.

161

Table A.1: Seven benefits of inner source

 More efficient and effective development

• Faster time-to-market

• Reduced development costs

Overcoming organizational unit boundaries

• Cost & risk sharing among org. units

• Collaboration across org. unit

boundaries

• Program-wide information exchange

More successful reuse

• Use of competences missing at

component providers

• Independence between reusers and

providers

• Relief of component providers

Better Software Product

• Increased code quality

• More innovative development

More flexible utilization of developers

• Simplified developer deployment

• Collaboration of detached developers

Enhanced knowledge management

• Community-based learning

• Openness and availability of knowledge

Higher employee motivation

A.1 More Efficient and Effective Development

IS can result in a more efficient and effective development by reducing time to market, devel-

opment cost, and generally increasing development efficiency (Riehle et al. 2016).

A.1.1 Faster time-to-market

Inner source enabled organizations to achieve a faster time to market. (Dinkelacker et al. 2002;

Riehle et al. 2016) describes “faster development schedules with code leveraged among several

products” as a benefit of IS. At Philips, it “led to time-to-market reduction of at least 3months”

(van der Linden 2009). Also, DTE Energy experiences quicker time-to-market (Smith and

Garber-Brown 2007). Decreased time-to-market is a result of outside resources becoming avail-

able to component providers (Riehle et al. 2009) and shifting time lines by the possibility of

using existing code and features earlier (van der Linden 2013).

Van der Linden (2013) attribute the faster-time-to market to the possibility to make earlier

use of software that is not internally released yet: “Departments can already start developing

162

upon new features of the platform before it is completely tested. This improves the time to

market drastically.”

A.1.2 Reduced development cost

IS can reduce the cost for software development andmaintenance. HP (Dinkelacker et al. 2002;

Melian and Mähring 2008), Lucent (Gurbani et al. 2006), DTE Energy (Smith and Garber-

Brown 2007), and Philips (Wesselius 2008) reported a decrease in development costs. HP

(Melian and Mähring 2008) experienced and Neus and Scherf (2005) assume increased devel-

opment efficiency.

A.2 Overcoming of Organizational Unit Boundaries

Boundaries betweenorganizational units (org. units) canbecomehard to cross in large organiza-

tions. By creating an intra-organizational community, IS is a vehicle to overcome such bound-

aries and raise awareness of company-wide activities and goals (Martin and Aitken 2012). At

SAP, amajority of respondents (55/83) of a survey initiated by the founders of their IS program

reported that IS enabled them to gather an understanding of other org. units’ work (Riehle

et al. 2009). IS facilitates an improved organization-wide perspective and intra-organizational

collaboration (Riehle et al. 2016).

A.2.1 Cost and risk sharing among org. units

IS strengthens an organization-wide focus by promoting cost and risk sharing between org.
units. Wesselius (2008) describes his experience:

“It’s indeed the cost- and risk-sharing benefits that primarily drive our ISS community - and both

benefits reflect our overall business goals.”

A consequence can be increased trust between org. units.

Cost and risk sharing between org. units can be achieved with collaborative development

projects where org. units jointly start IS projects. Each org. unit supplies a fraction of the re-

sources needed for the project. Consequently, cost and risk are shared among the org. units.

163

A.2.2 Collaboration across org. unit boundaries

IS enables collaboration among the org. unit boundaries to a degree not possible in traditional

setups (Vitharana et al. 2010; van der Linden 2013). Collaborations among org. units’ bound-

aries are more flexible in IS, enabling to quickly start, stop, and change collaboration (van der

Linden et al. 2009).

In IS programs with free choice of components or even free task choice, a developer can

quickly switch which ISS component to use or contribute to. In IS programs with assigned

tasks and components, reusingparties still have the chance todecidehow intensely and towhich

functional areas to contribute.

A.2.3 Program-Wide information exchange

Easy access to information spread over the organization is one of the main consequences of

IS adoption (van der Linden et al. 2009). Vitharana et al. (2010) of IBM report that “findings

reveal that the greater openness [...] enhances information sharing among a project’s stakehold-

ers”. IS lowers the transaction cost for information (Neus and Scherf 2005). Eased information

exchange leads to an increased awareness of organization-wide development efforts (Lindman

et al. 2008).

A.3 More Successful Reuse

The surveyed literature reported IS’s openness to enhance firm internal software reuse. DTE

Energy observed IS to be a superior approach to embedding software reuse compared to purely

tool driven strategies (Smith and Garber-Brown 2007; Anthes 2005). The awareness of other

developer’s activities (Vitharana et al. 2010) and the availability to pick up code on different

levels of granularity (Whittaker et al. 2012) distinguish IS from other approaches to software

reuse.

With a growing IS portfolio, more code becomes openly available to be picked up for reuse.

Consequently, we believe selective or even universal IS programs to be more beneficial for en-

abling organization-wide software reuse than project-specific IS programs.

164

A.3.1 Use of competence missing at component providers

IS allows component providers to utilize competences and resources outside their organiza-

tional scope (Gurbani et al. 2006, 2010) and enables bottom-up collective intelligence (Riehle

et al. 2009). This translates can translate into higher quality components and enables reusers

to make ISS components fit better for their use-cases by contributing to them.

A.3.2 Independence between reusers and providers

In a traditional development setup, reusing a software component increases the dependence on

its providers. IS decreases the dependence of reusers on providers. Reusers have the option to

perform changes on their own in case the component providers have different plans regarding

the components future (Vitharana et al. 2010; van der Linden 2013).

It is even possible to fork a project or perform and maintain one’s own local modifications

(Stol et al. 2011). As a result, political power play is mitigated (Gurbani et al. 2006). However,

forking should be only done as a last resort because maintaining multiple forks of the same ISS

component is costly and jeopardizes efficiency benefits of IS (Gurbani et al. 2006, 2010).

A.3.3 Relief of component providers

Component providers can become a bottleneck (Oor et al. 2008). IS allows the reusing parties

to submit their own changeswithout having towait for the componentproviders to implement

them. Providing andmaintaining components becomes less resource intensive (Vitharana et al.

2010).

Van der Linden (2013) sees this benefit as one driving force behind the IS adoption at Philips:

“The most important reason for Philips to move to inner source development was to resolve the

organisational issue that domain engineering was becoming a bottleneck in product line develop-

ment. Increasingly more business units are using the platform developed by the domain engineer-

ing group.”

Van der Linden (2013) summarizes that “inner source helped to break the platform bottleneck,

since using departments are able to create patches”.

165

A.4 Better Software Product

Organizations reported that IS enabled them to achieve a higher quality software product than

with traditional development methods alone.

A.4.1 Increased code quality

IS is believed to result in increased code quality (Goldman andGabriel 2005; Smith andGarber-

Brown 2007; Martin and Aitken 2012) for example, shown by a lower defect ratio (van der

Linden 2013). Fox (2007) of IBMconcludes that “sharing code tends to increase its robustness”.

The increased code quality can be explained by Linus’ law which states that “given enough

eyeballs, all bugs are shallow” (Raymond 1999). Linus’ law has also validity in the context of

IS (Neus and Scherf 2005; Melian and Mähring 2008) as developers from the community take

part in debugging tasks (Dinkelacker et al. 2002; Riehle et al. 2009).

Other causes can be observed. Dinkelacker et al. (2002) observed “improved quality levels of

shared software as authors’ reputations are at stake”. Also, Riehle et al. (2009) found the quasi-

public scrutiny to make developers “feel compelled to strive for high quality of contributions”.

Finally, the increased employee motivation (see paragraph increased employee motivation) can

result in higher code quality (Riehle et al. 2009).

A.4.2 More innovative development

The surveyed case studies reported that IS can lead to a more innovative development. Melian
et al. (2002) attribute this to enhanced reuse coming with IS:

“Tentative results indicate that [inner source] and its precursors facilitate collaborative efforts

leading to improved conditions for software development, re-use and innovation withinHewlett-

Packard.”

IS enables firm internal open innovation (Morgan et al. 2011) and according to Riehle et al.
(2009) enhances research-to-product transfer:

“Research projects can get expertise and volunteers from downstream product units. Such early

buy-in from the product units eases the research-to-product-unit transfer.”

A contributor might even directly add innovative features to a component (Riehle et al. 2009).

Exploration-oriented IS projects like the ones at Lucent (Gurbani et al. 2006) or SAP (Riehle

et al. 2009) can be used to explore innovative fields and consequently to enhance the research-

166

to-product transfer. We believe a high-degree of self-organization (free choice of tasks and com-

ponents) to support a more innovative development as developers are given opportunities to

contribute new ideas and features to IS projects outside the immediate scope of their everyday

work.

A.5 More Flexible Utilization of Developers

Riehle et al. (2016) observe developers in an IS context can be used more flexibly leading to

improved resource management.

A.5.1 Simplified developer deployment

IS makes project information openly available and consequently can ease the deployment of

individuals to new projects (Melian et al. 2002). Developers “can quickly join a project by un-

derstanding the rationale behind some feature selection and implementation” (Melian et al.

2002). In this way IS “creates an opportunity for rapid re-deployment of developers not just

from one project to another but from one product to another” (Dinkelacker et al. 2002). Also

the unified tool set often found in IS, eases deployment of developers (Dinkelacker et al. 2002;

Riehle et al. 2009; Whittaker et al. 2012).

The ease to deploy developers between projects and tasks depends on the prevalence of the

IS program in the organization. In a selective or universal IS program, developers switching

projects benefit from the openly available project information inmany IS projects. In a project-

specific IS program, only one IS project exists. The ease of deployment between the potentially

many non-IS projects does not necessarily change as a result of IS.

A.5.2 Collaboration of detached developers

IS allows detached developers to collaborate. Due to its open communication mechanisms,

developers can collaborate even though they are geographically (van der Linden et al. 2009;

van der Linden 2013) or temporally (Melian and Mähring 2008) detached.

167

A.6 Enhanced Knowledge Management

IS can lead to abetter knowledgemanagement as it allowsknowledgedisseminationby community-

based learning and increases availability of knowledge. IS leads to enhanced intra-organizational

knowledge sharing (Riehle et al. 2016).

Selective or universal IS programsmakemultiple IS projects and their documentationopenly

available. Consequently, such IS programs also make available knowledge regarding multiple

IS projects. However, project-specific IS programs can also enhance the knowledge manage-

ment within the organization. For example, the project-specific IS program around Lucent’s

SIP server implementation reportedly helped to convey knowledge about the back-then new

SIP protocol to the organization’s developers (Gurbani et al. 2006, 2010).

A.6.1 Community-Based learning

IS enables community-based learning within program-wide and project-specific communities.

At Philips, one formal help desk group was completely replaced by mailing lists and discus-

sion groups (van der Linden 2013). IS spreads knowledge regarding ISS components through

the organization by enabling developers to gain hands-on experiences with new technologies

(Gurbani et al. 2006). Mailing lists, wikis, and forums can support community based learning

(Smith and Garber-Brown 2007; Martin and Hoffman 2007).

A.6.2 Openness and availability of knowledge

Openness of code allows developers to learn from more experienced colleagues’ code (Whit-

taker et al. 2012). In addition, open communication transforms communication contents into

accessible artifacts of knowledge. Typical communication tools that enable such a persistence

are forums or mailing lists (Martin and Hoffman 2007). The persistent communication as

well as open documentation artifacts in IS can result in constantly up-to-date documentation

(Melian and Mähring 2008) and subsequently enhanced openness and availability of knowl-

edge.

168

A.7 Higher Employee Motivation

IS can facilitate highermotivation and job satisfaction of developers (Riehle et al. 2016) and lead

to “improved [...] morale and retention” (Martin and Aitken 2012). The increased motivation

can result in the volunteering where developers are intrinsically motivated to contribute to an

IS project in their spare time – similar to some developers in open source (Gurbani et al. 2006).

Google published an experience report of a developer who reported to be motivated by the

self-selection of tasks at Google (Google-Blog 2006). We believe that a high degree of self-

organization (free task choice and free component choice) contributes to higher employee mo-

tivation.

Riehle et al. (2009) reported of volunteering in an exploration-oriented IS project. Gurbani

et al. (2006) reported of volunteering in a IS project that started as an exploration-oriented

IS project. We believe that exploration-oriented IS project might be particularly motivating for

those developers that are interested in learning about new technologies or being part of projects

they perceive innovative.

169

B
Additional Materials regarding the

Patch-Flow Crawler

This section provides additional materials regarding the patch-flow crawler presented in chap-

ter 4. We give source code listings of particularly important interfaces and provide a mapping

of key concepts of the patch-flow crawler’s domain model to the context of the software tools

it communicates with.

B.1 Source Code Listings

This section gives code listings of important interfaces discussed in chapter 4.

B.1.1 ScmAdapter Interface

public interface ScmAdapter {

/**

* Fetches the CodeContributions in the given range from a previously specified

* repository.

*

* The method can be run in parallel multiple times. But the caller needs to

* ensure that it is only called for onw repository (as identified by

171

* getId()) once. Otherwise, the state of the local cache will be corrupted

* leading to wrong results.

*

* For simplicity, ScmAdapter allows its implementors to ignore the very

* first commit done to a repository.

*

* @param _repository

* The Repository that we want to fetch the patches from

*

* @param _start

* The point in time the date range you are interested in begins

* (inclusive)

* @param _end

* The point in time the date range you are interested in ends

* (exclusive; the first point to discard)

*

* @return Code contributions contributed in the defined time frame. For each,

* the following attributes are set:

*

* 1. Repository object (identifying the repository the contribution was

* made to)

*

* 2. The FileChange objects (regarding each code contribution)

*

* The CodeContribution object returned by this method does not have

* other objects linked to it (like a patch's author, committer,

* inner source project etc.)

*

* Some source code management systems already give you information

* on the persons authoring or committing changes. In this cases,

* implementors of this method are allowed to link Person objects as

* authors and committers but are responsible themselves to provide

* CodeContributionProcessors that persist these objects.

*/

public Iterator<CodeContribution> fetch(Repository _repository, Date _start, Date _end);

}

B.1.2 PreStep and PostStep Interface

public interface PreStep extends Activity { /* no code */ }

public interface PostStep extends Activity { /* no code */ }

public interface Activity {

/**

172

* Run the defined step.

*

* @param _crawlRun

* CrawlRun the step belongs to.

*/

public void run(CrawlRun _crawlRun) throws StepExecutionFailure;

}

B.1.3 PreStep and PostStep Interface

public interface CodeContributionProcessor {

/**

* Performs the specified processing on the given code contribution.

*

* @param _cc

* The code contribution to be processed (modified).

* @return Process (modified) contrib. or null if the processor decides to

* filter out the CodeContribution.

*/

public CodeContribution process(CodeContribution _codeContribution);

}

B.2 Mapping of Concepts

Table B.1 describes towhat terms the concepts of the patch-flow crawler (and its domainmodel)

map in the context of GitHub Enterprise, Gitlab, and Microsoft Team Foundation Server

(TFS).

173

Table B.1: Mapping of concepts to terminology of GitHub Enterprise, Gitlab, TFS

Concept Evuivalent

GitHub Enterprise Gitlab TFS

Code contribu-
tion

Commit Commit Change set

Patch Commit (whose author
is not part of org. unit
owning the receiving IS
project)

Commit (whose author
is not part of org. unit
owning the receiving IS
project)

Change set (whose
author is not part of
org. unit owning the
receiving IS project)

Repository Repository Repository Repository

IS Project Assumption: IS projects
= repository

Assumption: IS projects
= repository

N/A

Committer (of
a code contribu-
tion)

A person identified
by the committer
pseudonym

A person identified
by the committer
pseudonym

N/A

Author (of a
code contribu-
tion)

A person identified by
the author pseudonym

A person identified by
the author pseudonym

Author

174

C
Research Protocol for Multiple-Case Case

Study

Chapter 5 presented a case study of three organizations running five inner source (IS) programs

that identified their IS practices, measured the patch-flow, and theorized about the relationship

of IS practices and patch-flow.

This appendix presents parts of our case study protocol. We shortened the case study pro-

tocol presented in this appendix to avoid duplication with those parts of the approach already

discussed in chapter 5. Following the suggestions ofYin (2013) and inspiredbyother researchers’

protocols (Stol and Fitzgerald 2014), we report on ...

• ... the study’s objectives and our design decisions (section C.1)

• ... our data collection procedures and questions (section C.2)

• ... our guidelines for reporting the case study data and findings (section C.3)

In addition, this protocol summarizes key artifacts including ...

• ... our code book developed as part of the thematic analysis of IS practices (section C.4.1)

175

• ... quotes from interviews in their original language (section C.4.2)

A case study protocol is a living document that is continuously adapted and refined during

the course of the study. A sizeable portion of this protocol as it is nowwas written in late stages

of our research.

This case study protocol is written with two audiences in mind: First, we wrote the pro-

tocol for ourselves (the researchers undertaking the case study). It serves as a guideline for us

collecting, analyzing, and reporting on the case study data. It makes explicit how we set out to

operate. Where things were left implicit in the beginning of our study, it forces us to retrospec-

tively document our approach in more detail than in an article’s method section – helping us

to identify potential flaws in our study’s trustworthiness. Second, we wrote the protocol for

fellow researchers reading the corresponding article. We intent this protocol to support replica-

tion of our study and allow readers to judge its trustworthiness and limitations on a informed

basis. As a consequence, the majority of this protocol is written in past tense.

C.1 Case Study Overview & Design

This section gives an overview of our case study and its underlying research design.

C.1.1 Research Objective

Our case study addresses the following research questions:

• RQ4: What is the magnitude of IS collaboration in organizations?

• RQ5: How do IS practices affect IS collaboration?

We discussed the research objectives, our motivation, an resulting research questions in detail

in chapter 5. We omit further discussion of our research objectives in this appendix.

C.1.2 Case Study Research and Alternatives

Yin (2013) defines case study research as follows:

“A case study is an empirical inquiry that investigates a contemporary phenomenon [...] in depth

andwithin its real-world context, especially when the boundaries between phenomenon and con-

text my not be clearly evident.”

176

We deemed case study research to be an appropriate method choice for our research question:

• Boundaries between phenomenon and context unclear. Case studies empirically investi-

gate a phenomenon within its real world context (Yin 2013). This makes them particu-

larly useful if the boundaries between a phenomenon and its context cannot be clearly

defined. This is the case with the organizations we study: It was not immediatly clear

if IS practices or also other contextual (e.g. the strong dependency of product units on

the platform unit in medical org.’s imaging platform) influence IS collaboration or its

magnitude.

• Contemporary nature of phenomenon. Case studies are particularly fit to investigate con-

temporary phenomenon. This is the case with the phenomena we study: We identified

IS practices and IS collaboration happening at time of data collection or in the very near

past (within one year of data collection).

• No example answers of research questions. No prior research has yet answered RQ4 and

RQ5. Case study research is fit to systematically produce example: Particularly for RQ4,

our case study creates examples by demonstrating what magnitude and structure of IS

collaboration is possible and to be expected.

We identified no alternative feasible method:

One alternative to case studies are experimental research setups (controlled experiments, field

experiments). We excluded experimental setups for the following reasons:

• Absence of theories to validate. Experimental setups are typically used to validate the-

ories by means of hypothesis testing. With regards to our research questions, no pre-

existing theories or hypothesis were known to us (controlled experiments, field experi-

ments).

• Labroratory setting unrealistic. Due to the amount of individuals involved in IS col-

laboration and their rich working context, we deemed it impossible to replicate IS like

collaboration in a labroratory setting (controlled experiments).

• Higher degree of control unrealistic. We did not believe it to be realistic that organi-

zations would allow us to manipulate the used IS practices according to our research

agenda (field experiments).

177

Another alternative are multiple variants of survey research (source?) where a statistically

diverse or even representative sample of a population is surveyed. In our situation, one could

imagine to question a representative sample of all organizations using IS to identify what IS

practices they use and how their patch-flow looks like. This was not feasible in the scope of

this thesis for at least one reason: Patch-flowmeasurement is a non-trivial and costly (time con-

suming) undertaking. We did not expect survey participants to do this on their own; we did

not have the resources to do it ourselves for tens (diverse) or hundreds (representative) organi-

zations.

C.1.3 Case Study Design

We chose to perform case study research. Case study research is suitable to empirically investi-

gate a contemporary phenomenon in its real-life context (Yin 2003). Case studies can be used

when the boundaries between the phenomenon and context are not clearly evident (Yin 2003).

Different classes of case studies exist.

Multiple-Case CaseStudy

Case studies can be designed as single-case ormultiple-case case studies (Yin 2013): In amultiple-

case design, “two or more cases within different contexts make up amultiple[-case] case study”

(Runeson et al. 2012). In a single-case design, only one case exists.

We studied three organizations which largely independent contexts. While two of the se-

lected organizations are in an association relationship (one organization holds owns parts of the

other), all three organizations are independently managed, report their results independently

of one another, and are each listed on a stock market separately. With regards to our research

objective, we consider the contexts of all three organizations to be independent and constitute

separate cases. We consider our case study a multiple-case case study.

Embedded Case Study

In a holistic design, one unit of analysis per case is considered. The case itself is the unit of

analysis. In an embedded design, multiple units of analysis per case are considered (Yin 2013).

A unit of analysis is “unit lesser than themain unit of analysis [the case], fromwhich case study

data also are collected” (Yin 2013). Runeson et al. (2012) summarize that “the holistic design

178

is more appropriate when there are no logical subunits to the case, and therefore no obvious

additional units of analysis”. Units of analysis are different from an isolated case in that two

units of analysis can share a common context while to cases have an isolated context.

We consider our case study an embedded case study. Two of our three case organizations

have more than one independent IS program. While these programs share the same context

(the same organization), they are organized differently and IS happens using differing practices

and to differing extent. This warrants to analyze each IS program as individual unit of analysis.

We initially assumed our case study would follow a hollistic design investigating IS practices on

a per case (per organization)but learned about the different IS programs during our the course

of our data collection.

What one considers an isolated context or a unit of analysis depends on the research objective

or question at hand (Yin 2013).

Exploratory Case-Study

According to Runeson et al. (2012), case studies can serve multiple purposes. A case study can

be ...

• Descriptive - “portraying the current status of a situation or phenomenon”

• Exploratory - “finding out what is happening, seeking new insights, and generating ideas

and hypothesis for new research”

• Explanatory - “seeking an explanation for a situation or a problem, mostly but not nec-

essarily, in the form of a causal relationship”

• Improving - “trying to improve a certain aspect of the studied phenomenon”

Weposition our case study as an exploratory case study becausewe seek to generate new insights

(in the form of hypotheses about the relationship between IS practices and IS collaboration).

However, our study also has descriptive and explanatory aspects as outlined below.

Descriptive. When answering RQ4, our case study is descriptive in that it does not form

a theory on the magnitude of IS collaboration (using patch-flow as a proxy) but is simply de-

scribing our observations and thus portreying the state of the patch-flow phenomenon in the

cases’ units of analysis.

179

Explanatory. When answering RQ5, our case study is explanatory in that we seek to iden-

tify relationshipsbetween twophenomena (ISpractices exercised and IS collaborationobserved).

However, it is not our primary goal to explain the relationships we observed.

Exploratory. Rather than explaining, we uncover correlations and interpret as well as hy-

pothesize about their meaning and reasons. We present hypotheses forming a theory of the

effect on IS practices on IS collaboration. Thus, we used our case study for theory building

(Eisenhardt 1989) and it serves an exploratory purpose.

Case Selection

We discuss the case selection in detail in chapter 5. We omit further discussion in this appendix.

C.2 Data Collection Procedures & Questions

This section describes our data collection procedures.

C.2.1 Qualitative Data

Tounderstand how IS programs are set up in the studied organizations, we collected qualitative

data. Subsequently, we performed a thematic analysis (Braun and Clarke 2006) of the data to

identify collaboration practices. For each identified collaboration practice, we assessedwhether

it is an IS practice or not using the findings of prior literature.

In this section, we outline the time frame over which data was collected, how we establish

informed consent, and give an example of a used interview guideline. We will omit a general

description of the data collection and analysis proceedure because it is layed out in chapter 5.

Collection & Inclusion

Figure C.1 shows all collected qualitative data items. The x-axis shows the date on which we

collected the item. The y-axis indicates the data collection approach. Each green triangle rep-

resents an item considered in our case study. The figure shows that we started data collection

in the case organization with timely distance: The industry organization served as our pilot

study. Based on our learnings, we adjusted the data collection procedures in the automotive

180

Figure C.1: Overview of collected and included qualitative data

Artifact
Document
Interview

Observation

2016 2017 2018 2019

(a) Automotive

Artifact
Document
Interview

Observation

2016 2017 2018 2019

(b) Industry

Artifact
Document
Interview

Observation

2016 2017 2018 2019

(c) Medical

and medical organization (i.e. by reducing the number of interviews and increasing the num-

ber of opportunities for direct observations).

Figure C.1 also shows as gray circles excluded items not considered in the case study. Weman-

ually read and inspected every item to decide on inclusion or exclusion. We excluded observa-

tion notes (three in the automotive, four in industry, 20 in the medical organization) because

nothing of relevance to the case study was discussed during the observed meetings and work-

shops. We also excluded one interview in the automotive organization because the interviewee

(suggested by the organization) was a new hire who did not yet have an understanding of the IS

program. All other excluded items, were excluded because they had largely overlapping content

with other items or saturation was already reached.

The figure demonstrates our prolonged engagement (Guba 1981)with the case organizations.

It also documents a predicament: Much of the observations we performed, particularly atmed-

ical org., were not deemed not useful for the study. This is, because we observed meetings and

workshops where nothing of interest to this study was discussed. Still, we deemed it worth-

while to participate: It allowed us to forge a trust relationship to the organization, we collected

data that might be useful for future research, and as researchers understood the context of the

organization and their culture better.

181

Informed Consent

To establish informed consent with interviewees (Singer and Vinson 2002), we informed them

about the interview and asked their permission to perform an audio recording at least 24 hours

before the interview. We used the following email template:

Sehr geehrte Frau XXXXXXX,

Wir freuen uns schon auf das gemeinsame Gespräch mit Ihnen am XXXXX dem XX.XX. um

XX:XX.

Wir sind Forscher in der Open-Source-Research-Group an der Friedrich-Alexander-Universität

Erlangen-Nürnberg. Auf Initiative von XXXXX XXXXXXXXX möchten wir erforschen wie

und ob die Zusammenarbeit amXXXXXXXXXXXXXXXmit Inner Source verbessert werden

kann.

[...]

Für eine Bestandsaufnahme möchten wir bei unserem gemeinsamen Gespräch mehr aus Ihrem

Arbeitsalltag und zur Zusammenarbeit mit anderen Teams erfahren. Dazu haben wir einige Fra-

gen vorbereitet. Hierzu gibt es keine falschen oder richtigenAntworten. Vielmehr interessiert uns

Ihre Sichtweise und Ihre Erfahrungen.

Für eine präzise wissenschaftliche Auswertung der Inhalte, möchten wir gern eine Audioaufzeich-

nung des Gespräches vornehmen. Audioaufzeichnungen und Gesprächsprotokolle werden von

uns selbverständlich vertraulich behandelt und auf speziellen Servern archiviert.

Falls von Ihnen gewünscht, könnenwir auf eineAudioaufzeichnung verzichtenunddasGespräch

händisch protokollieren. Dieses Verfahren ist allerdings fehleranfälliger undweniger detailliert; es

könnte die Qualität unserer Ergebnisse mindern.

Falls von Ihrer Seite vorab Fragen bestehen, zögern Sie bitte nicht uns zu kontaktieren.

Mit freundlichen Grüßen, XXXXXXXX XXXXXXXX

The following is an English translation of this template:

Dear Mrs. XXXXXXX,

Weare already looking forward toour conversationwith youatXXXXXXXXXX.XX. atXX.XXX.

We are researchers from theOpen-Source-Research-Group of the Friedrich-Alexander-University

Erlangen-Nürnberg. As part of an initiative by XXXXXXXXXXXXXXwe would like to inves-

tigate whether and how the collaboration on XXXXXXXXXXXXXXX with Inner Source can

be improved.

[...]

182

For an assessment we would like to more about your everyday work and the collaboration with

your colleagues during our conversation. For this, we prepared some questions. There are not

wrong or right answers. Much more, we are interested to learn your perspective and experience.

For a precise scientific analysis of the contents, wewould like to perform an audio recording on the

conversation. Audio recordings and protocols will of course be treated confidential and archived

on specific servers.

If you prefer, we can refrain from doing an audio recording and manually write a protocol of

the conversation. However, this approch is more error prone and less detailed; it could limit the

quality of our results.

If you have any questions, please do not hesitate to contact us.

Best regards, XXXXXXXX XXXXXXXX

Interview Scheduling

We omit our interview schedule for privacy reasons.

C.2.2 Quantitative data

Chapter 5 gave an overview of how we implemented the steps of the patch-flow method to

measure patch-flow. Table C.1 gives a more detailed overview of the steps performed in each

organization. The numbers in the first column correspond to the steps present in chapter 3.

C.3 Guide for Case Study Report

We intend to report on the case study with two different publications:

1. A chapter of a thesis (this thesis) reporting about the case study findings

2. A journal-length article

In addition to describing typical items like related work or our research approach, we report on

the following insights generated from the case studies:

• We deliver a thick description of our observations in the case study. Per unit of analysis

we report on the observed...

– ... the collaboration practices (including IS practices and non-IS practices)

183

TableC.1:Patch-flow
m

easurem
entstepsperorganization

A
utom

otiveO
rg.

Industry
O
rg.

M
edicalO

rg.

(1)Extraction
ofcodecon-
tributions

W
eextracted

codecontributionsfrom
the

organization’sG
itH

ub
EnterpriseforgeA

PI
usingourpatch-flow

craw
ler.

A
n
engineeroftheorganization

utilized
aproprietaryexportscriptto

extractcode
contributionsfrom

theorganization’sTeam
Foundation

Server(T
FS)instance.

Forthedevelopm
enttools,w

eextracted
code

contributionsfrom
theorganization’sT

FS
instance’sA

PIusingourpatch-flow
craw

ler.
Fortheim

agingplatform
,an

engineerof
theorganization

utilized
proprietaryexport

scriptsto
extractcodecontributionsfrom

the
T
FS

instance.

(2)M
apping

ofcodecon-
tributionsto
IS

projects

In
G
itH

ub
Enterprise,each

IS
projectis

stored
in

itsow
n
repositorym

akingthe
m

appingofcodecontributionsto
IS

projects
trivial.

W
eutilized

thedirectorypathsto
determ

ine
foreach

codecontribution
thereceivingIS

project.

W
eutilized

thedirectorypathsto
determ

ine
foreach

codecontribution
thereceivingIS

project.

(3,4,5)Iden-
tification

of
authorsand
m

appingto
org.units

Foram
ajorityofcodecontributions,either

auniqueID
oftheauthororhis/herem

ail
addressw

asavailable.
W

equeried
an

LD
A
P
serverstoringinform

a-
tion

on
allem

ployeesusingtheuniqueID
ortheem

ailaddressto
identifyauthorsand

theirorg.unit.

Each
T
FS

exportcontained
auniqueidenti-

fieroftheauthorofacodecontribution.
D
ueto

privacyconcerns,w
edid

notget
accessto

theem
ployeedatabasebutan

engineeringm
anagerattheorganization

m
anuallylooked

up
theseuniqueidentifiers

in
afirm

-internaldatabase,assem
bled

in-
form

ation
on

theorganizationalunitsinto
am

achinereadableform
at,and

m
apped

authorsto
theorganizationalunits.

Foram
ajorityofcodecontributions,eithera

uniqueID
oftheauthororhisfirstnam

e,last
nam

e,and
departm

entcodew
ereavailable.

T
hecom

panyprovided
to

usalistin
X
M

L
form

atw
ith

inform
ation

on
selectdevelop-

ers.
W

eidentified
authorsand

m
apped

them
to

organizationalunitsusingthislist,theinfor-
m

ation
availablew

ith
thecodecontributions.

(6)M
apping

ofIS
projects

to
org.units

W
em

apped
each

IS
projectto

theorg.unit
w
hosedeveloperscontributed

them
ostcode

contributionsto
it.

W
em

apped
each

IS
projectto

theorg.unit
w
hosedeveloperscontributed

them
ostcode

contributionsto
it.

W
em

apped
each

IS
projectto

theorg.unit
w
hosedeveloperscontributed

them
ostcode

contributionsto
it.

184

– ... the IS collaboration (using patch-flow as a proxy)

• We perform a cross-unit of analysis synthesis where we compare the IS practices and

patch-flow found in each unit of analysis.

• We discuss our interpretation of the observations separately from the case study obser-

vations.

When reporting the results in a length-constrained outlet, we drop the thick description of the
unit of analysis and emphasize the (less space consuming) synthesis. This is consistent with the
reporting format for multiple-case case studies suggested by Yin (2013):

“Your full multiple-case report will consist of the single cases, usually presented as separate chap-

ters or section. In addition to these individual cases, your full report will contain an additional

chapter or section covering the cross-case analysis and results. As another common variant, the

cross-case material can form the bulk of the main report (especially suitable for a journal-length

article) [...]”

Where possible we give empirical evidence by quoting from the qualitative data items or at

least referencing which qualitative data items we are refering to.

C.4 Artifacts

This section presents key artifacts created or collected as part of the case study. We present our

code book (used as part of the thematic analysis to identify IS practices).

C.4.1 Code Book

As described in chapter 5, we analyzed the collected qualitative data using thematic analysis

(Braun and Clarke 2006). To support this process, we created a code book (Guest et al. 2006).

The following table C.2 presents our code book.

185

Table C.2: Codebook used for thematic analysis

Code Full definition When (not) to use

Theme: 1) Open code for all parties to read, (re)use

All parties can read

code

Every party in the organization can see

the source code of an IS project.

When there is evidence that every party

in an organization can see the code of

an IS project or when an interviewee

does mention seeing the code but does

not mention limitations.

All parties can read

documentation

There are documents that every party

in the organization can access

When there is evidence that every

party in an organization can read doc-

umentation artifacts regarding an IS

project.

All parties can (re)use Every party in the organization can

reuse the code of an IS project

When there is evidence that every party

in an organization can reuse the code

of an IS project or when an intervie-

wee does mention reuse but does not

mention limitations.

Theme: 2) Provide single entry point to IS program

Feature for searching

IS projects

The software used to run / host the IS

program offers features for searching

IS projects.

Use when there is indication that there

is a software that offers features to

perform a search (i.e. keyword search)

to find IS projects. This code can also

be used of no dedicated forge software

is used.

Feature for listing IS

projects

The used software forge offers features

for listing IS projects.

Use when there is a list of all or specifi-

cally filtered IS projects. The code can

also be used if the list is not created

automatically but e.g. curated by a

responsible individual or group.

Theme: 3) Open code to read, (re)use only for selected parties

All parties can read

code

See above!

186

Table C.2: Codebook used for thematic analysis - continued

Code Full definition When (not) to use

Product line partici-

pants can (re)use

Only participants in a specific product

line can (re)use code of the IS program

Use when there is indication that only

product line participants can partici-

pate in (re)use. Do not use for purely

technical reasons parties are excluded

from (re)using.

Theme: 4) Open code for contributions by all parties

All parties can con-

tribute patches

Every party in the organization can

contribute code to an IS project

When there is evidence that every party

in an organization can contribute code

to an IS project or when an interviewee

does mention code contributions but

does not mention limitations.

Theme: 5) Establish committer role

Committer role

enforced by forge

No committer role is explicitly defined,

but the feature of the forge force users

to define a committer (or multiple

committers) per project

Do not use when there is indication of

a committer role formally existing (e.g.

in process documents, descriptions of

how to run an IS project).

Mandatory review by

committers

All code contributions (by a person

who is not the committer of the

project) have to be reviewed by a

committer

Use when there is indication that code

review is mandatory by a committer

and the role of committer is explicitly

defined per IS project.

Mentoring by com-

mitters

Committers mentor contributors Use when there is evidence that com-

mitters are not only refereeing patches

but are also providing (implicit or ex-

plicit) mentoring to individuals e.g. by

giving feedback on a patch submission.

187

Table C.2: Codebook used for thematic analysis - continued

Code Full definition When (not) to use

Theme: 6) Perform ad hoc code review & mentoring

Ad hoc review by

arbitary developers

Code contributions are reviewed in

an adhoc fashion and not by desig-

nated persons (i.e. not by designated

committers)

Use when there is evidence that code

review happens in an adhoc fashion

(sometimes they do, sometimes they

don’t) or by arbitrary / contributor-

selected people. Do not use when there

is a defined process for review (e.g. we

always perform pre commit review by

persons with defined properties) or

defined role (e.g. a committer reviews

everything).

Review not manda-

tory

Code review of contributions is not

mandatory

Use when there is indication that code

review is not mandatory. Do not use

when interview / document refers to

ad hoc or voluntary code review.

Ad hoc mentoring by

arbitrary developers

Contributors are mentored in an

adhoc fashion

Use when there is evidence that men-

toring happens in an adhoc fashion

(sometimes it does, sometimes it

doesn’t). Do not use when there is

a defined process for mentoring (i.e.

committer mentors newbies).

Theme: 7) Establish mandatory code review (but not committer role)

Mandatory review by

arbitrary developers

Code contributions are always revi-

wwed by not by designated persons

(i.e. not by designated committers)

Use when there is indication of manda-

tory review (e.g. enforced by process

or infrastructure) but there is no in-

dication of a dedicated reviews (i.e. a

committer).

188

Table C.2: Codebook used for thematic analysis - continued

Code Full definition When (not) to use

Theme: 8) Open code for contributions by selected parties

One specific org. unit

can contribute

Only specific org unit can contribute

to the IS program

Use when there is evidence that only

one specific org. unit can contribute

code to an IS project. Do not use when

there are technical reasons or temporal

reasons for others being excluded.

Do only use when this is an explicit

decision (e.g. for process reasons).

Theme: 9) Provide dedicated open communication infrastructure

Dedicated open

communication

infrastructure

There is dedicated infrastructure for

open communication.

Use when there is evidence of infras-

tructure being provided for the sole

or primary reason of enabling open

communication.

Theme: 10) Communicate using closed communication

Closed communica-

tion

Closed communication (communica-

tion that is not open communication)

regarding IS programs or projects is

excercised.

Use when there is evidence of non-

open communication regarding IS

projects or the IS program.

Incidental open

communication

Incidental open communication is

taking place regarding IS programs or

projects.

Use when there is evidence of inci-

dental / sparsely happening open

communication.

Theme: 11) Establish governance committees (inspired by OS foundations)

Project management

committees

Project-specific project management

committees are responsible for manag-

ing the individual projects.

Use when there is evidence of a com-

mittee / board as described in the

definition.

Program-wide opera-

tional board

A program-wide operational board

governs / runs everyday activities of

the program.

Use when there is evidence of a com-

mittee / board as described in the

definition.

Program-wide steer-

ing board

A program-wide steering committee is

responsible for the strategic decisions

in the program

Use when there is evidence of a com-

mittee / board as described in the

definition.

189

Table C.2: Codebook used for thematic analysis - continued

Code Full definition When (not) to use

Theme: 12) Design & enforce IS license

License for each IS

component

Every IS project is using a license that

is pre-defined and the same for all

projects.

Use when there is evidence of an IS

license a) existin and b) being manda-

tory for all projects in the IS program.

Contributor license

agreement

Every contributor has to sign an indi-

vidual contributor license agreement.

Use when there is indication that

project contributors have to sign a

contributor license agreement first.

Theme: 13) Select & coach IS projects using project incubator

Project incubator A project incubator selects projects,

makes explicit the project lifecycle

status, and helps projects to grow their

communities

Use when the is evidence of a project

incubator as described in the defini-

tion.

Existing code base A code base must exist for a project to

be included into the program

Use when there is evidence that a

project must have an existing code base

to be included into the IS program.

Multiple interested

parties

For the project to be included, mul-

tiple parties must be interested (or

potentially interested) in the project.

Use when there is evidence that a

project must have multiple parties

interested in it to be included into the

IS program.

Theme: 14) Establish informal governance mechanisms

Regular coordination

meetings

Regular meetings regarding the IS

program take place

Use when there is evidence of IS pro-

gram governance by means of a regular

meeting.

C.4.2 Translated Quotes

The interviews we performed as part of the case study were all performed in a language other

than English. As a consequence, chapter 5 presents quotes from the interviews translated to

English. The following table C.3 presents the original quote for each translated quote.

We redacted information that allows a reader to identify our case organizations or individuals

within the cases. For example, when an individual mentioned a product or project name, we

190

refer to this as “[specific project]”. When an individual named a person, we refered to him or

her as “[specific person]”.

Table C.3: Original quotes and English translation

Item Translation Original

AI2 “We designed [AutoSource] and every em-

ployee of [automotive org.] can participate.

Its public and everybody can see what we do –

everyone else within the company.”

“Wir haben [AutoSource] aufgesetzt und

ganz [Automotive org.] kann jetzt auch daran

teilnehmen. Das ist öffentlich und jeder sieht

auch, was wir machen sieht auch jeder andere

innerhalb der gesamten Firma.”

AI2 “Well, allright, this is not only present in [Au-

toSource]. But [there is] collaboration where

you have a shared repository, where everybody

sees what others are doing there, and you

self-organize”

“Ja gut das ist jetzt nicht ausschließlich [Au-

toSource] aber die Zusammenarbeit in der

Form, dass man eben das gemeinsame Repos-

itory hat, jeder sieht, was die anderen darauf

machen und man organisiert sich dann auch.”

AI4 “There are – but that is a technical problem

– excluded parties [...]. They use another

technical infrastructure than the remaining

group.”

“Es gibt - das ist aber technisches Problem -

Parteien die ausgeschlossen sind, weil sie von

der Plattform abgehalten werden aus technis-

chen Gründen [...]. Die nutzen eine andere

technische Infrastruktur als Automotive. ”

II2 Referring to an IS project: “There is surely

one or the other thing that we contributed

because it was simply not yet available or be-

cause we have a solution already within our

environment.”

“Und es gab sicherlich das eine oder andere

[Feature], das wir beigesteuert haben, weil es

noch nicht zur Verfügung stand oder weil es in

unserem Umfeld zuerst da war.”

II2 “If we do our own work on a [specific IS

project], then we do not just check in our con-

tribution, but we write to [a specific employee],

who is responsible for [the specific IS project]

and ask him: ‘We had to adapt something. Can

you have a look at that?”’

“wenn wir eben selbst [spezifisches-Projekt]-

Sachen anpassen müssen, dann checken wir

die nicht einfach ein, sondern wir schreiben

den [einem bestimmten Mitarbeiter], der auch

die Verantwortung für die [dieses spezifische

Projekt] hat, an, und sagen ‘Wir haben hier

etwas anpassen müssen. Kannst du dir das

angucken?”’

191

Table C.3: Original quotes and English translation - continued

Item Translation Original

II2 “We at the [specific] team, we have the habit

of at least asking those responsible for an [IS

project] to perform a review.”

“Wir vom [spezifischen] Team haben uns

angewöhnt, die [Projekt-]Verantwortlichen zu-

mindest mal zu einem Review anzuschreiben.”

II2 “The [...] code we develop: It’s for everyone.

We just have the responsibility for it.”

“Der [...] Code, den wir entwickeln. Der

gehört der Allgemeinheit. Wir haben die

Verantwortung.”

II3 “Everybody can influence [a project] at any

point in time: either reporting a bug or con-

tributing an extension”

“Jeder kann jederzeit Einfluß darauf nehmen,

Fehler melden oder Erweiterungen weit-

ergeben.”

II3 “It’s not mandatory that I have to do a review

for each code contribution. Not mandatory.

No.”

“Es ist nicht die Pflicht, dass ich wirklich unter

jeder Code-Änderung einen Review machen

muss. Die Pflicht ist nicht da, nein.”

II3 “[There is] a [test infrastructure] planning

meeting. What’s going on? What’s the status?

How to continue regarding tooling? For exam-

ple. So, there are different things put on the

agenda.”

“[Es gibt] so eine [Testinfrastruktur]-

Planungsrunde: wie es aussieht? Der Status?

wie es weitergeht bezüglich Tooling? Zum

Beispiel. Also es kommen verschiedene Punkte

auf die Tagesordnung drauf.”

II3 “Those [projects] are libraries – ready made

functionality – that everybody can use. Not

only our [team], but everybody. [...] I have

read access. Also other teams can look at my

source code. That’s what it [the program] is

made for”

“Das [die Projekte] sind Bibliotheken - vorge-

fertigte Funktionen - die jeder einsetzen kann.

Also nicht nur unsere [Teammitglieder], son-

dern jeder. [...] Leserechte habe ich. Auch

andere Teams können in meine Sourcen rein-

schauen. Dafür ist es ja gedacht.”

II4 “I have full access on the source code [of the

test infrastructure projects]”

“Also auf die [Testinfrastruktur] Sachen habe

ich vollen Zugriff auf die Sourcen”

II4 “In principle every body can check in [changes].

If it builds, it’s in.”

“Im Prinzip kann jeder einchecken. Und wenn

es nachher baut, dann ist es drin.”

II4 “They communicate among themselves, using

communicator, email.”

“Nein. Die kommunizieren unter sich, eben

auch Communicator, E-Mail.”

II5 “There are regular status meetings for devel-

opers [of test infrastructure components and

tools]”

“Es gibt regelmäßige Statusrunden für

[Testinfrastruktur-Komponenten und Tool]-

Entwickler.”

192

Table C.3: Original quotes and English translation - continued

Item Translation Original

II5 “There is nobody who examines the code, one

checks in. You got to know what you are doing.

And well, you check it in [into the repository]

and then it’s in”

“Es gibt auch niemanden der den Code prüft,

den man da eincheckt. Man muss wissen,

was man tut. Und ja, das wird dann halt

eingecheckt und dann ist es drin.”

II5 “Typically via communicator [an instant mes-

saging tool], email, sometimes using face to

face meetings. If somebody works in the same

building, you get together.”

“Normalerweise über Communicator, E-Mails,

manchmal auch direkt treffen. Wenn es jemand

hier im Haus ist, dann setzt man sich direkt

zusammen.”

II5 “We fix bugs in [component a], [component

b], [component c] ourselves as well.”

“Wir fixen einige Bugs in [Komponente a],

[Komponente b], [Komponente c] auch selber.

”

MI1 “If a colleague doesn’t react to a review ticket

within two hours, the author will typically

search for another reviewer”

“Wenn ein Kollege sich binnen 2h nicht zu

einem Review Ticket meldet, sucht der Autor

für gewöhnlich einen anderen Reviewer” (from

hand written notes)

MI1 “Reviews of various artifacts are mandatory.

[...] Product code must be reviewed by at least

on additional software developer”

“Reviews von verschiedenen Artefakten

verpflichtend. [...] Product Code (mindestens

ein weiterer Entwickler)” (from hand written

notes)

MI1 “The developer can pick the reviewer himself

[...] Often you simply ask somebody from

your own team”

“Entwickler kann Reviewer selbst auswählen

[...] Normalerweise Reviewer aus eigenem

Team” (from hand written notes)

MI3 “If I am a developer of [a product unit], and

I want to contribute to the [platform], I

can’t just readily do it. [...] We designed a

special delta-training with which a [product-

]developer receives the necessary privileges –

from the process perspective – by means of

an additional training to change things at the

[platform].”

“Wenn ich jetzt ein Entwickler von [Produk-

teinheit] bin, und ich möchte auch in der

[Platform] etwas dazu beitragen, dann kann

ich das nicht so ohne weiteres tun [...] [Wir

haben] eine spezielle Delta-Schulung sozusagen

ins Leben gerufen, mit der ein [Produkt]-

Entwickler durch eine zusätzliche Schulung -

aus Prozess-Sicht - dazu berechtigt ist, in der

[Platform] etwas zu ändern.”

193

Table C.3: Original quotes and English translation - continued

Item Translation Original

MI3 “So, mandated by our software process we have

the obligation to review. Both handing in the

code for review and performing the code review

[...] has to follow specific guidelines.”

“Also wir haben aus unserem Software-Prozess

heraus eine Verpflichtung etwas zu reviewen.

Sowohl das Code -Abgegeben, als auch das

Reviewen des Codes [...] muss nach gewissen

Richtlinien erfolgen.”

194

	Contents
	Introduction
	Motivation, Research Questions, Contributions
	Inner Source Taxonomy
	Method for Measuring Inner Source Collaboration
	Influence of Inner Source Practices on Collaboration

	Inner Source Definitions
	Thesis Structure

	Inner Source Taxonomy
	Related Work
	Elements of Inner Source
	Classification Framework

	Research Approach
	Literature Selection
	Resulting Literature
	Literature Analysis

	Key Elements of Inner Source
	Open Environment
	Shared Cultural Values
	Communities around Software
	Inner Source Scenarios

	Classification Framework for Inner Source
	Classification of Inner Source Programs
	Classification of Inner Source Projects

	Application of the Classification Framework
	Application to Inner Source Programs
	Application to Inner Source Projects

	Conclusion

	Patch-Flow Measurement Method
	Related Work
	Measuring Inner Source Collaboration
	Measuring Software Development Collaboration

	Patch-Flow Measurement Method
	Contribution-Flow Phenomenon
	Patch-Flow Phenomenon
	Data Structures
	Measurement Process
	Relationship to Classification

	Evaluation Approach
	Case Selection
	Data Gathering

	Evaluation Results
	Organizational Structure
	Patch-Flow Overview
	Patch-Flow Over Time
	Patch-Flow into IS Projects

	Discussion
	Evaluation
	Operational Inner Source Definition

	Trustworthiness
	Credibility
	Dependability
	Confirmability
	Transferability

	Conclusion

	Patch-Flow Crawler: A Tool for Measuring Patch-Flow
	Requirements
	Overview
	Identify and Persist Inner Source Projects
	Extract Code Contribution Meta Data
	For Persisted Code Contributions, Identify Receiving Projects
	Identify and Persist Authors, Committers of Code Contributions
	Identify and Persist Org. Units of Authors, Committers
	Enable Incremental Crawling

	Software Architecture
	Static View
	Dynamic View
	Deployment View

	Design & Implementation
	Domain Model
	Crawl Engine
	Plugin Interface

	Evaluation
	GitHub Enterprise-Specific Requirements
	Gitlab-Specific Requirements
	TFS-Specific Requirements
	Remaining Requirements

	Conclusion

	Case Study: Patch-Flow at Three Large Organizations
	Related Work
	Prior Case Studies
	Magnitude of IS Collaboration
	Influence of IS Practices

	Research Approach
	Selecting Cases
	Identifying IS Practices (Qualitative)
	Measuring Patch-Flow (Quantitative)

	Results: Case Descriptions
	Automotive Org. - AutoSource
	Automotive Org. - Forge Components
	Industry Org. - Test Infrastructure
	Medical Org. - Imaging Platform
	Medical Org. - Development tools

	Results: Cross Synthesis
	Inner Source Practices
	Patch-Flow
	Correlations

	Interpretation
	Magnitude of Inner Source Collaboration
	Effect of Inner Source Practices on Collaboration

	Trustworthiness
	Credibility
	Transferability
	Dependability
	Confirmability

	Conclusion

	Closing
	Results and Consequences
	RQ1: What are the elements of IS software development?
	RQ2: How do different IS implementations differ from one another?
	RQ3: How to measure IS collaboration within a software developing organization?
	RQ4: What is the magnitude of IS collaboration in organizations?
	RQ5: How do IS practices affect IS collaboration?

	Future Research
	Extend the IS Taxonomy
	Build upon Patch-Flow Method
	Explore Non-Code Contribution-Flow and Open Communication
	Systematically Transfer Open Source Insights
	Investigate Program Governance

	Outlook

	References
	Appendix Claimed Benefits of Inner Source Adoption
	More Efficient and Effective Development
	Faster time-to-market
	Reduced development cost

	Overcoming of Organizational Unit Boundaries
	Cost and risk sharing among org. units
	Collaboration across org. unit boundaries
	Program-Wide information exchange

	More Successful Reuse
	Use of competence missing at component providers
	Independence between reusers and providers
	Relief of component providers

	Better Software Product
	Increased code quality
	More innovative development

	More Flexible Utilization of Developers
	Simplified developer deployment
	Collaboration of detached developers

	Enhanced Knowledge Management
	Community-Based learning
	Openness and availability of knowledge

	Higher Employee Motivation

	Appendix Additional Materials regarding the Patch-Flow Crawler
	Source Code Listings
	ScmAdapter Interface
	PreStep and PostStep Interface
	PreStep and PostStep Interface

	Mapping of Concepts

	Appendix Research Protocol for Multiple-Case Case Study
	Case Study Overview & Design
	Research Objective
	Case Study Research and Alternatives
	Case Study Design

	Data Collection Procedures & Questions
	Qualitative Data
	Quantitative data

	Guide for Case Study Report
	Artifacts
	Code Book
	Translated Quotes

